数字作为关键生产要素带动AI智算产业升级
技术变革的价值放大主要依靠带动生产力、生产组织形态变革,带动社会生产生活中相匹配的基础设施发展,实现产业升级。当下智算时代虽然在初级阶段,依托AI大模型形成的新一代算力基础设施和AI应用已经在诸多领域崭露头角
生产要素变革的发展历程
基于数字中国的发展规划,2023年中央发布《数字中国建设整体布局规划》,明确了数字中国是构建数字时代竞争优势的关键支撑,是继移动互联网时代以来经济增长新引擎。数字中国愿景的实现,基石在于夯实数字化基础设施建设
数字中国建设整体布局
2023年2月27日,中共中央、国务院印发《数字中国建设整体布局规划》,指出建设数字中国是数字时代推进中国式现代化的重要引擎,是构筑国家竞争新优势的有力支撑,并明确数字中国建设按照“2522”的整体框架进行布局
数据成为关键输入的生产资料,通过业务贯通、数智决策、流通增值的三层数据使用,对传统行业带来真正的价值放大,带来对传统生产模式的颠覆性变革,数字服务将会成为数据价值放大的最终出口
数据要素的价值分析
趋势1
AI智算产业将会重构传统ICT产业生态
从完整产业链出发,数据作为新的生产要素将会感知层、基建层、模型层、应用层和服务层的完整环节带来增量需求
智算时代ICT产业链概览
AI智算产业将会对传统ICT数字产业带来全面升级,云服务仍是AI应用的核心载体基座;多数厂商会依托自身优势资源和能力围绕AI赋能进行跨环节跨产品的服务拓展,以更快的找准自身的新价值定位
AI智算产业生态图谱概览
当下仍处在AI智算产业的发展初期,存在跨环节提供综合服务的业务组合模式,预测随着产业规模的扩大,各环节的核心价值和产品服务模式会更为聚焦
趋势2
智算中心设施加速落地,高效的整合、调度算力资源为开发者提供良好的支撑是竞争的关键
当前中国将采取“基础设施+生态参与方+应用场景”三位一体的智算中心统筹布局思路,引导技术升级、角色升级和应用场景同步升级。复杂的地缘竞争下,国产替代以提升供应链韧性、构建长期竞争力也是重要的发展机遇
智算中心是中国经济发展的重要新型基础设施
智能算力需求持续增长
随着AI大模型的发展和AIGC应用的不断落地,对智能算力的需求与日俱增,智算中心将承载算力资源需求,作为底层基础设施支撑AI技术的不断发展
从算力部署规划看,统筹规划引领下,各地有望爆发新一轮新基建的建设高潮。对比历史期数据中心的建设模式,本轮新基建部署将会更关注建运一体,能耗达标、成本控制、安全可信,同时关注配套算力部署的运载、存储需求以及应用需求的协同发展
从目前建设情况看,根据算力规模可划分为三大类:1000P以上的多为公共用途,且未来有望承担枢纽节点角色, 100P以下更多以企业级零散需求为主;100P到1000P多服务于产业集群类需求,当前落地项目数量更多
截至2023年12月,全国建成运行与计划建设智算中心已有40余座,超过30个城市在建或筹建智算中心,以一线和新一线城市为主体并逐步向地级及以下城市渗透
智算中心价值取决于算力资源与算力水平,随着算力需求逐步释放,低成本的整合、调度海量算力资源,为开发者提供良好的开发工具和环境,成为产业链竞争的制胜因素;而算力枢纽调度将以建立全国一张网为目标,产品标准制定的科技创新和产业引领意义重大
智算中心建设框架
• 算力资源的规模范围:要求企业在生产资料的投资建设有规模化的布局;企业在算力聚合和获取方面保持稳定可靠、安全可信
• 算力调度的效率最优,成本最优:要求企业实现资源耗用的最优化
• 算力释放的价值最大:要求企业能够为AI类产品的应用开发提供更好的开发环境,包括模型使能、开发工具以及开发类、安全类服务
贯穿算力服务全产业链“资源获取-聚合-调度-应用”,关键任务在于实现算力资源的集中,并通过算力调度服务实现资源最优化利用。除新建需求外,传统IDC升级改造也将构成算力规划的关键组成
智算中心“建运一体”全产业链环节布局的关键举措
趋势3
通用模型终将走向趋同,算力成本与AI原生应用生态将成为AI云服务竞争的关键点
AI智算时代云服务产品形态和关键价值发生变化,需要借助云原生和容器技术等新模式、智算等新能力打造产品优势,借助AI运维平台向下链接算力服务,向上支持AI模型和AI原生应用开发
AIaaS带来云服务上的巨大变革:
• 云服务产业链各环节逐步融合,每个环节技术的突破性进展都有可能引领行业的变革
• 各类玩家皆拥有基于自身既有的技术优势打通各环节能力,成长为领先的AIaaS服务商提供一体化服务的机会
• AI运营平台是实现跨越式布局和突破的切入点
通用大模型之争最终将会集中在算力成本和参数规模的竞争,通过构建AI原生应用生态,提供AI云服务来实现商业变现
**典型案例:**微软云通过闭源大模型应用开放和自身原生应用,作为导入AI云服务的关键路径,利用先发优势,打造系统性的难迁移的云服务护城河
微软云服务AI化升级路径
云服务厂商在完整生态中,须通过培育原生应用的开发和使用社区,才争取到进入AI智算产业深水区竞争的入场券
趋势4
AI赛道投资火热,基建与应用两端爆发
当前中国资本市场对于AI领域的主要关注在两端:前端基础设施部署及后端应用开发;AI相关应用开发正由虚转实,落地实体经济的场景应用结合AI原生应用的组合布局初见端倪
智能机器人板块投资数量断层领先,AI应用、智能制造板块跟随其后,整体投资向中早期倾斜,交易金额大多集中在千万元级
智能机器人板块
智能机器人作为人工智能重要的应用场景,2023年资本在该领域投资热情澎湃,且资本在企业早期融资阶段即开始入局
AI应用板块
从交易量看,AI应用继续保持投资热度;从交易轮次看,资本持续关注早期的投资机会,同时在细分领域有所突破的项目也进一步获得资本关注
智能制造板块
2023年智能制造应用板块交易主要由Pre-A轮及战略投资交易驱动,全年交易数量接近百个
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。