——从极简界面到企业级管理,总有一款适合你
当 Meta 的 Llama、阿里的 Qwen 等开源大模型掀起本地化部署热潮,如何选择一款高效、安全、易用的交互界面成为关键。本文精选 5 款高口碑开源 WebUI 工具,从开发者到普通用户,总有一款让你相见恨晚!
Ollama 官方开源社区
Ollama 的使用
你可访问 Ollama 官方网站 下载 Ollama 运行框架,并利用命令行启动本地模型。以下以运行 llama2 模型为例:
ollama run llama2
基于您的计算机配置,各种模型可能呈现出不同的性能特征。
Ollama 的优势
Ollama 的模型运行在本地,以及用户产生的所有数据均存储在本地,因此可以不受审查,并且足够安全和私密,能够有效地满足数据隐私保护的需求。此外,对于在本地运行的应用程序而言,这种方式不仅可以提高效率,而且还能够消除对网络环境的依赖。
Ollama 的不足
尽管 Ollama 能够在本地部署模型服务,以供其他程序调用,但其原生的对话界面是在命令行中进行的,用户无法方便与 AI 模型进行交互,因此,通常推荐利用第三方的 WebUI 应用来使用 Ollama, 以获得更好的体验。
- LobeChat:全能型选手,打造私人 ChatGPT 体验
Github 链接
LobeChat 作为一款开源的 LLMs WebUI 框架,支持全球主流的大型语言模型,并提供精美的用户界面及卓越的用户体验。该框架支持通过本地 Docker 运行,亦可在 Vercel、Zeabur 等多个平台上进行部署。用户可通过配置本地 Ollama 接口地址,轻松实现 Ollama 以及其他本地模型的集成。查看在 LobeChat 中如何使用 Ollama
核心亮点
-
多模态交互
:支持文本、图片、语音输入,兼容 GPT-4V 视觉模型
-
插件生态
:联网搜索、PDF 解析、代码执行一键集成
-
跨平台部署
:Docker 一键启动,支持 Vercel/Sealos 云端托管
适用场景:
-
团队协作:结合 Cpolar 内网穿透实现公网访问
-
多模型管理:同时对接 OpenAI、Gemini、Ollama 等 API
部署命令:
docker run -d -p 3210:3210 -e OLLAMA_PROXY_URL=http://host.docker.internal:11434/v1 lobehub/lobe-chat
- Open WebUI:企业级首选,安全与功能兼备
Github 链接
Open WebUI 是一个可扩展、功能丰富且用户友好的开源自托管 AI 界面,旨在完全离线运行。它支持各种 LLM 运行器,包括 Ollama 和 OpenAI 兼容的 API。
核心亮点
-
RBAC 权限控制
:管理员可审批用户、隔离敏感模型
-
RAG 知识库
:支持 PDF/TXT 文档向量化检索(
#doc 关键词
触发) -
Pipeline 扩展
:自定义内容过滤、多语言翻译等处理流
技术优势:
# GPU 加速部署 docker run -d --gpus=all -v /opt/ollama:/root/.ollama -p 11434:11434 ollama/ollama
企业级功能:
-
通过
OLLAMA_BASE_URL
环境变量隔离内外网模型服务 -
对话记录加密存储,支持导出/导入历史数据
- Enchanted:苹果生态的优雅之选
Github 链接
Enchanted 是一款专门为 MacOS/iOS/iPadOS 平台开发的应用程序,支持 Llama、Mistral、Vicuna、Starling 等多种私人托管模型。该应用致力于在苹果的全生态系统中为用户提供一个未经过滤、安全、保护隐私以及多模态的人工智能体验。
核心亮点
-
原生性能优化
:M1/M2 芯片专属加速,响应速度提升 40%
-
多设备同步
:支持 iPhone/iPad/Mac 无缝切换
-
隐私优先
:数据永不离开本地,iCloud 端到端加密备份
用户评价:
“在 MacBook 上运行 Llama3.1 时,Enchanted 的显存管理明显优于其他客户端” —— 开发者社区实测
- Chatbox:轻量级利器,开箱即用
Github 链接
Chatbox 是一个老牌的跨平台开源客户端应用,基于 Tauri 开发,简洁易用。除了 Ollama 以外他还能够通过 API 提供另外几种流行大模型的支持。
核心亮点
-
零配置启动
:Tauri 框架构建,Windows/Mac/Linux 全平台支持
-
多模型切换
:同时管理 Ollama、ChatGPT、Claude 会话
-
离线模式
:无网络环境下仍可使用本地模型
典型应用:
-
快速原型验证:搭配 Gemma 2B 实现低资源消耗测试
-
教育场景:学生无需复杂配置即可体验大模型
- NextJS Ollama LLM UI:极简主义者的福音
Github 链接
NextJS Ollama LLM UI 是一款专为 Ollama 设计的极简主义用户界面。虽然关于本地部署的文档较为有限,但总体上安装过程并不复杂。该界面设计简洁美观,非常适合追求简约风格的用户。
核心亮点
-
浏览器即开即用
:无需安装,访问链接即可对话
-
Markdown 增强
:完美渲染数学公式、代码块
-
轻量化设计
:资源占用仅为同类产品的 1/3
开发者技巧:
# 国内镜像加速部署 docker run -d -p 3000:8080 --registry-mirror=https://docker.nju.edu.cn ...
终极选购指南
未来趋势:本地化部署的三大方向
-
边缘计算融合
:树莓派等设备实现端侧推理
-
多模态升级
:Stable Diffusion 文生图集成
-
自动化运维
:Kubernetes 集群管理方案
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。