在人工智能这个超热闹的 “江湖” 里,技术突破就像时不时放的超级大烟花,总能把大伙惊得合不拢嘴。最近,谷歌带着它的 Gemini Embedding 闪亮登场,这 “家伙” 一出现,可算是在业界掀起了一场超级旋风。
啥是文本嵌入技术呢?简单来说,文本嵌入技术就是将文字转化为数字向量,让 AI 能够理解文本含义及上下文关系的关键技术。打个比方,就像是给文字穿上了一件数字 “外衣”,把它们变成 AI 能轻松看懂的数字向量,这样 AI 就能搞清楚文字到底啥意思,前后文有啥关系啦。
Gemini Embedding 便是谷歌在这一领域的最新力作,自 3 月 7 日集成至 Gemini API 以来,迅速展现出其强大实力。
在权威的 Massive Text Embedding Benchmark(MTEB)测试中,Gemini Embedding以平均任务得分 68.32 的优异成绩,超越 Mistral、Cohere 和 Qwen 等竞争对手,荣登榜首。这一成绩绝非偶然,它充分彰显了 Gemini Embedding 在文本数据排名、分类和检索等方面的卓越能力。在配对分类任务中,它获得了 85.13 的高分;检索任务得分为 67.71;重排序任务也有 65.58 的出色表现 。这些数据直观地表明,Gemini Embedding 在实际应用,如 AI 搜索引擎、文档分析和聊天机器人优化等场景中,具备显著优势。
Gemini Embedding 厉害在哪呢?先说说性能,它能一口气 “吞下” 8K 个 tokens,这意味着可以处理老长老长的文章,输出向量维度更是达到 3K,比之前的模型厉害太多啦!而且它还支持 MRL 技术,就像有个神奇的开关,能根据你的需要,把向量维度灵活调整成 3K、2K、1K 或者 512,帮你节省不少存储空间,是不是超贴心?
Gemini Embedding 的优势体现在多个方面。在性能上,其输入长度支持 8K 个 tokens,能够处理更长的文章,输出向量维度达到 3K,相比之前模型实现了大幅提升,且支持 MRL 技术,可根据需求灵活调整向量维度(3K、2K、1K 或 512),节省存储空间。
语义理解能力更是 Gemini Embedding 的强项,它继承了 Gemini 大模型的超强 “大脑”,理解语言的能力杠杠的,都不用额外 “补课” 调整,在金融、法律、医学这些复杂领域,照样能轻松应对,精准捕捉文本里那些细微的语义差别。比如说,你在搜索引擎里问 “怎么用很少的钱,过一个超好玩的周末”,Gemini Embedding 一下子就能明白你既要省钱,又想玩得开心的小心思,帮搜索引擎快速找到最符合你心意的答案。
Gemini Embedding 还有个超厉害的本事,就是支持 100 多种语言,这在同类模型里简直是 “独一份”。有了这个技能,跨语言应用场景对它来说就是 “小菜一碟”。不管是跨语言翻译,还是多语言客户服务自动化、内容排名这些事儿,它都能做得漂漂亮亮。就拿跨境电商平台来说,有了 Gemini Embedding,不同语言的商品评论它都能轻松 “搞定”,统一转化成数字向量,准确判断用户满不满意,轻松打破语言障碍,给全球消费者提供超棒的服务体验。
Gemini Embedding 的应用前景那也是一片光明。在搜索引擎这块,它能让搜索结果更靠谱,帮谷歌正在测试的纯 AI 驱动搜索模式变得更牛;在多语言应用里,能让不同国家的人交流更顺畅;对企业来说,基于 Google Cloud 的 AI 分析、语义搜索和自动化数据检索功能都能得到大升级,让企业在市场竞争中 “一路开挂”。
可以想象,随着 Gemini Embedding 越来越普及,它就像一个超级 “连接器”,把自然语言处理和各种实际应用紧紧连在一起,给我们的生活和工作带来超多智能又便捷的体验,带着 AI 技术朝着更高的地方 “一路飞奔”!
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。