Combining Sketch and Tone for Pencil Drawing Production 论文阅读(1)

结合笔画和色调的铅笔素描生成

简介:这篇论文的作者是Cewu Lu 、Li Xu、 Jiaya Jia等人,来自香港中文大学计算机科学与工程系。介绍了如何使用笔画和色调生成一副类似人类手绘素描画。它的实现是构造了一个分两步走的系统,第一步生成手绘图,第二步是生成了色调,然后用一个带全局优化参数的模型进行色调的调整,特别对纹理丰富的区域,以及对象的轮廓线进行调整。
在这里插入图片描述
上图表示了合成一副铅笔素描的做法,生成了笔画、生成了色调、最后结合两者之后生成了最终的输出。
原文的Introduction对于这个系统的实现,做了以下的描述:
Firstly, to capture the essential characteristics of pencil sketch and simulate rapid nib movement in drawing, we put stroke generation into a convolution framework.
Secondly, to avoid artifacts caused by hatching, we bring in tonal patterns consisting of dense pencil strokes without dominant directions.
Finally, an exponential model with global optimization is advocated to perform tone adjustment, notably benefiting rendering in heavily textured regions and object contours.
首先,

Robust controller design involves the synthesis of a controller that can handle uncertainties and disturbances in a system. This is typically done by formulating the problem as an optimization problem, where the goal is to find a controller that minimizes a cost function subject to constraints. One approach to robust controller design involves combining prior knowledge with data. Prior knowledge can come from physical laws, engineering principles, or expert knowledge, and can help to constrain the search space for the controller design. Data, on the other hand, can provide information about the behavior of the system under different conditions, and can be used to refine the controller design. The combination of prior knowledge and data can be done in a number of ways, depending on the specific problem and the available information. One common approach is to use a model-based design approach, where a mathematical model of the system is used to design the controller. The model can be based on physical laws, or it can be derived from data using techniques such as system identification. Once a model is available, prior knowledge can be incorporated into the controller design by specifying constraints on the controller parameters or the closed-loop system response. For example, if it is known that the system has a certain level of damping, this can be used to constrain the controller design to ensure that the closed-loop system response satisfies this requirement. Data can be used to refine the controller design by providing information about the uncertainties and disturbances that the system is likely to encounter. This can be done by incorporating data-driven models, such as neural networks or fuzzy logic systems, into the controller design. These models can be trained on data to capture the nonlinearities and uncertainties in the system, and can be used to generate control signals that are robust to these uncertainties. Overall, combining prior knowledge and data is a powerful approach to robust controller design, as it allows the designer to leverage both physical principles and empirical data to design a controller that is robust to uncertainties and disturbances.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值