【时序数据 - 自监督预训练】基于时频一致性的时间序列自监督对比预训练

研究提出一种基于时间频率一致性的预训练方法(TF-C),通过在无目标样本情况下使时间与频率表示对齐,改善了时间序列任务的下游性能。实验显示,TF-C在各种场景中显著优于现有方法,特别是在一对一和一对多设置中表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文原文: Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency (基于时频一致性的时间序列自监督对比预训练) (Neurips 2022)
代码地址: Time-Frequency Consistency

摘要

在时间序列的预训练中存在一项的挑战,这是由于预训练和目标域之间存在不匹配,例如时间动态的变化、快速演变以及长短周期效应,导致下游性能不佳。虽然域自适应方法可以缓解这些变化,但大多数方法需要来自目标域的样本,这使预训练表现不佳(这里是相对CV或NLP方向的困境)。
为了解决这个挑战,需要适应具有不同时间动态的目标域,并且在预训练期间能够在没有看到任何目标样本的情况下完成这一点。相对于其他模态,我们期望在时间序列中,相同示例的基于时间和基于频率的表示在时间频率空间中靠近。为此,我们认为时间频率一致性(Time-Frequency Consistency, TF-C)是预训练中可取的,即将样本的基于时间的域嵌入到其基于频率的邻域附近 (简单说就是让同一个样本在时频俩个域的嵌入对齐)。在TF-C的激发下,我们定义了一个可分解的预训练模型,其中自监督信号由时间和频率分量之间的距离提供,每个分量都通过对比估计进行训练。我们在包括电诊断测试、人体活动识别、机械故障检测和物理状态监测在内的八个数据集上评估了新方法。针对八种最先进的方法进行的实验证明,在一对一的设置中(例如,在EMG数据上微调EEG预训练模型),TF-C在平均F1分数上优于基线15.4%,在具有挑战性的一对多设置中(例如,为手势识别或机械故障预测微调EEG预训练模型),在精度上优于基线8.4%,反映了在现实应用中出现的各种场景的广泛性。

待解决问题

在这里插入图片描述

模型思路在这里插入图片描述

Loss组成

在这里插入图片描述

实验部分在这里插入图片描述

对齐可视化

在这里插入图片描述

读文章后的Q&A

> 这里是引用

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Willow_CS_DN

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值