EfficientDet详解



EfficientDet: Scalable and Efficient Object Detection

EfficientDet

EfficientDet是google在2019年11月发表的一个目标检测算法系列,分别包含了从D0~D7总共八个算法,对于不同的设备限制,能给到SOTA的结果,在广泛的资源约束下始终比现有技术获得更好的效率。特别是在单模型和单尺度的情况下,EfficientDet-D7在COCO测试设备上达到了最先进的52.2AP,具有52M参数和325B FLOPs,相比与之前的算法,参数量缩小了4到9倍,FLOPs缩小了13到42倍。
首先,google提出了一种加权双向特征金字塔网络(BiFPN),它允许简单、快速的多尺度特征融合;其次,提出了一种复合特征金字塔网络缩放方法,统一缩放所有backbone的分辨率、深度和宽度、特征网络和box/class预测网络。
在这里插入图片描述

模型大小和在coco数据集上的mAP

BiFPN

传统的top-down FPN只有自顶向下单向信息流,PANet增加了自底向上的信息流,NAS-FPN通过大量计算和搜索有更复杂的信息流。论文中对不同FPN实验发现,PANet的效果最佳,但参数量计算量也较大。论文在PANet的基础上提出了几种跨尺度连接的优化方法:

  • 删除那些只有一个输入边缘的节点。
    论文中认为如果一个节点只有一个输入边缘,没有特征融合,那么它对目的是融合不同的特征的特征网络的贡献就会更小。这引出了一个简化的双向网络;
  • 如果原始输入节点处于同一水平,将从原始输入添加一个额外的边到输出节点,以便融合更多的特征,而不增加大量的成本;
  • 与只有一个自顶向下和一个自底向上路径的PANet不同,论文将每个双向(自顶向下和自下而上)路径视为一个特征网络层,并多次重复同一层,以实现更多的高级特征融合。
    在这里插入图片描述
不同的FPN结构

加权特征融合

当融合不同分辨率的特征时,一种常见的方法是首先将它们调整到相同的分辨率,然后将它们进行总结。金字塔注意网络global self-attention上采样恢复像素定位。所有以前的方法都一视同仁地对待所有输入特征。 然而,论文中认为由于不同的输入特征在不同的分辨率,他们通常贡献的输出特征不平等。为了解决这个问题,论文建议为每个输入增加一个权重,并让网络学习每个输入特性的重要性。

  • Fast normalized fusion:wi>0,与softmax有相似的学习规律,但速度在GPUs上比softmax快30%。

在这里插入图片描述

加权公式

在这里插入图片描述

加权计算例子

Compound Scaling

  • Backbone network:采用相同的宽度/深度缩放系数的efficientnet-B0到B6。
  • BiFPN network:
    在这里插入图片描述
BiFPN宽度与深度的缩放规则
  • Box/class prediction network:宽度与BiFPN一样,仅对深度进行缩放。
    在这里插入图片描述
Box/class prediction network深度的缩放规则
  • Input image resolution:
    由于特征级3-7在BiFPN中使用,输入分辨率必须可分27=128,因此使用方程线性增加分辨率。
    在这里插入图片描述
分辨率缩放规则

模型详细参数

在这里插入图片描述

EfficientDet-D0~D7的参数和缩放因子

模型结果比较

在这里插入图片描述

EfficienDet系列与各类模型在coco上的比较
  • 5
    点赞
  • 60
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
EfficientDet是一种高效的目标检测算法,旨在提高目标检测的准确性和效率。它基于EfficientNet模型,通过在不同尺度的特征层上进行多尺度特征融合和级联特征筛选,有效地提高了检测性能。 要复现EfficientDet的PyTorch版本,首先需要准备相关的代码和数据集。可以从GitHub上找到官方提供的EfficientDet代码库,并下载相应的预训练权重和示例数据集。 在复现过程中,需要了解EfficientDet的网络结构和训练策略。EfficientDet主要由骨干网络、特征网络和目标检测头组成。骨干网络通常采用EfficientNet作为特征提取器,特征网络基于FPN和BiFPN来融合不同尺度的特征,而检测头则负责预测目标的位置和类别。 在编写代码时,需要按照EfficientDet的网络结构构建PyTorch模型,并加载预训练权重。可以使用PyTorch提供的各种库和函数来实现网络的构建和训练过程。训练过程通常涉及数据加载、前向传播、损失计算和反向传播等步骤。 为了复现EfficientDet,还需要选择适当的损失函数和优化器。常用的目标检测损失函数包括交叉熵损失和IoU损失。优化器可以选择Adam或SGD等常用的优化器。 在训练过程中,通常需要设置适当的学习率、批量大小和训练轮数等超参数,并进行调优以提高模型的性能。可以通过监控训练过程中的验证集性能来选择最佳的模型。 在复现EfficientDet时,还可以根据具体需求进行一些改进和优化。例如,可以尝试使用更大的图像分辨率、调整多尺度训练策略、增加数据增强方法等来提高模型的性能。 总之,复现EfficientDet的PyTorch版本需要理解其网络结构和训练策略,并按照这些原理进行代码实现和相关参数的设置。通过合理调整超参数和优化方法,可以达到和原论文相近甚至更好的目标检测性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值