Progressive Hard-case Mining across Pyramid Levels in Object Detection论文阅读
code: https://github.com/zimoqingfeng/UMOP
paper: https://arxiv.org/pdf/2109.07217.pdf
Contributions
- 通过实验证明FPN的性能在一定程度上受到特征层级之间不平衡问题的限制。
- 提出的改进方法UMOP缓解了特征层级之间的不平衡问题, 可以提高one-stage检测器大约1.5的mAP,且收敛更快,没有额外计算量。
- 论文的最佳模型在MS COCO测试设备上实现了55.1 AP,这是迄今为止单级探测器中的SOTA。
- UMOP
- 独立的分类损失监控每个金字塔级别,并考虑单独的重新采样.
- 渐进式硬案例挖掘损失(progressive hard-case mining loss)定义了金字塔级别的所有损失,解决了级别不平衡问题,无需额外的级别设置。