Progressive Hard-case Mining across Pyramid Levels in Object Detection论文阅读

code: https://github.com/zimoqingfeng/UMOP

paper: https://arxiv.org/pdf/2109.07217.pdf

请添加图片描述

Contributions

  1. 通过实验证明FPN的性能在一定程度上受到特征层级之间不平衡问题的限制。
  2. 提出的改进方法UMOP缓解了特征层级之间的不平衡问题, 可以提高one-stage检测器大约1.5的mAP,且收敛更快,没有额外计算量。
  3. 论文的最佳模型在MS COCO测试设备上实现了55.1 AP,这是迄今为止单级探测器中的SOTA。
  • UMOP
    • 独立的分类损失监控每个金字塔级别,并考虑单独的重新采样.
    • 渐进式硬案例挖掘损失(progressive hard-case mining loss)定义了金字塔级别的所有损失,解决了级别不平衡问题,无需额外的级别设置。

The Statistical Analysis on Level Imbalance

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值