文章目录
卷积码
  
    
     
      
       
        (
       
       
        n
       
       
        ,
       
       
        k
       
       
        ,
       
       
        N
       
       
        )
       
      
      
       (n,k,N)
      
     
    (n,k,N)卷积码是将每
    
     
      
       
        k
       
      
      
       k
      
     
    k个信息比特作为一组,编码成
    
     
      
       
        n
       
      
      
       n
      
     
    n个编码比特输出。
    
     
      
       
        N
       
      
      
       N
      
     
    N为编码的约束长度,表示编码过程中有N组信息比特相互约束。卷积码的编码器具有记忆性,针对每组信息比特(
    
     
      
       
        k
       
      
      
       k
      
     
    k个比特)输入,有n个编码比特输出,编码比特不仅与当前输入的
    
     
      
       
        k
       
      
      
       k
      
     
    k个信息比特有关系,还与前
    
     
      
       
        N
       
       
        −
       
       
        1
       
      
      
       N-1
      
     
    N−1个
    
     
      
       
        k
       
      
      
       k
      
     
    k位输入信息比特有关。编码效率为
    
     
      
       
        
         η
        
        
         c
        
       
       
        =
       
       
        
         k
        
        
         n
        
       
      
      
       \eta_c=\frac{k}{n}
      
     
    ηc=nk。
    
     
      
       
        
         η
        
        
         c
        
       
      
      
       \eta_c
      
     
    ηc和
    
     
      
       
        N
       
      
      
       N
      
     
    N是衡量卷积码性能的两个重要参数。
 (关于
    
     
      
       
        N
       
      
      
       N
      
     
    N的含义,我在不同地方看到的不一样,有的说是编码过程中有
    
     
      
       
        N
       
      
      
       N
      
     
    N组信息比特相互约束,还有说是编码过程中有
    
     
      
       
        N
       
       
        +
       
       
        1
       
      
      
       N+1
      
     
    N+1组信息比特相互约束,本文我采用前者。)
卷积码编码器
  
    
     
      
       
        (
       
       
        n
       
       
        ,
       
       
        k
       
       
        ,
       
       
        N
       
       
        )
       
      
      
       (n,k,N)
      
     
    (n,k,N)卷积码的编码器由
    
     
      
       
        N
       
      
      
       N
      
     
    N组
    
     
      
       
        k
       
      
      
       k
      
     
    k级输入移位寄存器(
    
     
      
       
        N
       
       
        ×
       
       
        k
       
      
      
       N \times k
      
     
    N×k位寄存器)、
    
     
      
       
        n
       
      
      
       n
      
     
    n级输出移位寄存器和
    
     
      
       
        n
       
      
      
       n
      
     
    n个模2和加法器构成,每个输出移位寄存器有一个模2和加法器与其对应,每个模2和加法器输入端的数目不一定相同。下图为
    
     
      
       
        (
       
       
        n
       
       
        ,
       
       
        k
       
       
        ,
       
       
        N
       
       
        )
       
      
      
       (n,k,N)
      
     
    (n,k,N)卷积码编码器原理图。
 
   卷积码的生成矩阵就是在描述
    
     
      
       
        N
       
       
        ×
       
       
        k
       
      
      
       N \times k
      
     
    N×k位输入移位寄存器的每一位与每个模2和加法器的连接关系。
卷积码生成矩阵
教材上是按照先子生成矩阵、生成矩阵后生成元、子生成元的顺序讲解的,我感觉不太好理解。按”子生成元 → \to →生成元 → \to →子生成矩阵 → \to →生成矩阵”的顺序介绍,似乎更容易理解矩阵中的0和1所代表的的物理意义。
子生成元和生成元
  子生成元
    
     
      
       
        
         g
        
        
         
          (
         
         
          i
         
         
          ,
         
         
          j
         
         
          )
         
        
       
      
      
       g^{(i,j)}
      
     
    g(i,j):
    
     
      
       
        (
       
       
        n
       
       
        ,
       
       
        k
       
       
        ,
       
       
        N
       
       
        )
       
      
      
       (n,k,N)
      
     
    (n,k,N)卷积码有
    
     
      
       
        k
       
       
        n
       
      
      
       kn
      
     
    kn个子生成元
    
     
      
       
        
         g
        
        
         
          (
         
         
          i
         
         
          ,
         
         
          j
         
         
          )
         
        
       
      
      
       g^{(i,j)}
      
     
    g(i,j),其中
    
     
      
       
        i
       
       
        =
       
       
        1
       
       
        ,
       
       
        2
       
       
        ,
       
       
        3
       
       
        ,
       
       
        ⋯
        
       
        ,
       
       
        k
       
      
      
       i=1,2,3,\cdots,k
      
     
    i=1,2,3,⋯,k,
    
     
      
       
        j
       
       
        =
       
       
        1
       
       
        ,
       
       
        2
       
       
        ,
       
       
        3
       
       
        ,
       
       
        ⋯
        
       
        ,
       
       
        n
       
      
      
       j=1,2,3,\cdots,n
      
     
    j=1,2,3,⋯,n。每个子生成元是一个
    
     
      
       
        N
       
      
      
       N
      
     
    N维行向量,
    
     
      
       
        
         g
        
        
         
          (
         
         
          i
         
         
          ,
         
         
          j
         
         
          )
         
        
       
      
      
       g^{(i,j)}
      
     
    g(i,j)的第
    
     
      
       
        m
       
      
      
       m
      
     
    m位写成
    
     
      
       
        
         g
        
        
         m
        
        
         
          (
         
         
          i
         
         
          ,
         
         
          j
         
         
          )
         
        
       
      
      
       g^{(i,j)}_m
      
     
    gm(i,j),
    
     
      
       
        m
       
       
        =
       
       
        0
       
       
        ,
       
       
        1
       
       
        ,
       
       
        2
       
       
        ,
       
       
        ⋯
        
       
        ,
       
       
        N
       
       
        −
       
       
        1
       
      
      
       m=0,1,2,\cdots,N-1
      
     
    m=0,1,2,⋯,N−1,
    
     
      
       
        
         g
        
        
         
          (
         
         
          i
         
         
          ,
         
         
          j
         
         
          )
         
        
       
      
      
       g^{(i,j)}
      
     
    g(i,j)可以表示为:
     
      
       
        
         
          g
         
         
          
           (
          
          
           i
          
          
           ,
          
          
           j
          
          
           )
          
         
        
        
         =
        
        
         
          g
         
         
          0
         
         
          
           (
          
          
           i
          
          
           ,
          
          
           j
          
          
           )
          
         
         
        
         
          g
         
         
          1
         
         
          
           (
          
          
           i
          
          
           ,
          
          
           j
          
          
           )
          
         
         
        
         ⋯
         
        
         
          g
         
         
          
           N
          
          
           −
          
          
           1
          
         
         
          
           (
          
          
           i
          
          
           ,
          
          
           j
          
          
           )
          
         
        
       
       
        g^{(i,j)}=g^{(i,j)}_0\:g^{(i,j)}_1\:\cdots \: g^{(i,j)}_{N-1}
       
      
     g(i,j)=g0(i,j)g1(i,j)⋯gN−1(i,j) 
    
     
      
       
        
         g
        
        
         m
        
        
         
          (
         
         
          i
         
         
          ,
         
         
          j
         
         
          )
         
        
       
      
      
       g^{(i,j)}_m
      
     
    gm(i,j)表示第
    
     
      
       
        m
       
      
      
       m
      
     
    m组输入寄存器比特的第
    
     
      
       
        i
       
      
      
       i
      
     
    i位与第
    
     
      
       
        j
       
      
      
       j
      
     
    j个模2和加法器的连接关系,其中1表示相连,0表示不相连。
   生成元
    
     
      
       
        
         g
        
        
         
          (
         
         
          i
         
         
          )
         
        
       
      
      
       g^{(i)}
      
     
    g(i):
    
     
      
       
        (
       
       
        n
       
       
        ,
       
       
        k
       
       
        ,
       
       
        N
       
       
        )
       
      
      
       (n,k,N)
      
     
    (n,k,N)卷积码有
    
     
      
       
        k
       
      
      
       k
      
     
    k个生成元
    
     
      
       
        
         g
        
        
         
          (
         
         
          i
         
         
          )
         
        
       
      
      
       g^{(i)}
      
     
    g(i),其中
    
     
      
       
        i
       
       
        =
       
       
        1
       
       
        ,
       
       
        2
       
       
        ,
       
       
        3
       
       
        ,
       
       
        ⋯
        
       
        ,
       
       
        k
       
      
      
       i=1,2,3,\cdots,k
      
     
    i=1,2,3,⋯,k。每个子生成元是一个
    
     
      
       
        N
       
       
        n
       
      
      
       Nn
      
     
    Nn维行向量,
    
     
      
       
        
         g
        
        
         
          (
         
         
          i
         
         
          )
         
        
       
      
      
       g^{(i)}
      
     
    g(i)可以表示为:
     
      
       
        
         
          g
         
         
          
           (
          
          
           i
          
          
           )
          
         
        
        
         =
        
        
         
          g
         
         
          0
         
         
          
           (
          
          
           i
          
          
           ,
          
          
           1
          
          
           )
          
         
         
        
         
          g
         
         
          0
         
         
          
           (
          
          
           i
          
          
           ,
          
          
           2
          
          
           )
          
         
         
        
         ⋯
         
        
         
          g
         
         
          0
         
         
          
           (
          
          
           i
          
          
           ,
          
          
           n
          
          
           )
          
         
         
        
         ⋯
         
        
         
          g
         
         
          
           N
          
          
           −
          
          
           1
          
         
         
          
           (
          
          
           i
          
          
           ,
          
          
           1
          
          
           )
          
         
         
        
         
          g
         
         
          
           N
          
          
           −
          
          
           1
          
         
         
          
           (
          
          
           i
          
          
           ,
          
          
           2
          
          
           )
          
         
         
        
         ⋯
         
        
         
          g
         
         
          
           N
          
          
           −
          
          
           1
          
         
         
          
           (
          
          
           i
          
          
           ,
          
          
           n
          
          
           )
          
         
        
       
       
        g^{(i)}=g^{(i,1)}_0 \:g^{(i,2)}_0\:\cdots\:g^{(i,n)}_0\:\cdots\:g^{(i,1)}_{N-1}\:g^{(i,2)}_{N-1} \:\cdots \:g^{(i,n)}_{N-1}
       
      
     g(i)=g0(i,1)g0(i,2)⋯g0(i,n)⋯gN−1(i,1)gN−1(i,2)⋯gN−1(i,n)
子生成矩阵和生成矩阵
  子生成矩阵
    
     
      
       
        
         g
        
        
         m
        
       
      
      
       g_m
      
     
    gm:
    
     
      
       
        (
       
       
        n
       
       
        ,
       
       
        k
       
       
        ,
       
       
        N
       
       
        )
       
      
      
       (n,k,N)
      
     
    (n,k,N)卷积码有
    
     
      
       
        N
       
      
      
       N
      
     
    N个子生成矩阵
    
     
      
       
        
         g
        
        
         m
        
       
      
      
       g_m
      
     
    gm,其中
    
     
      
       
        m
       
       
        =
       
       
        0
       
       
        ,
       
       
        1
       
       
        ,
       
       
        2
       
       
        ,
       
       
        ⋯
        
       
        ,
       
       
        N
       
       
        −
       
       
        1
       
      
      
       m=0,1,2,\cdots,N-1
      
     
    m=0,1,2,⋯,N−1。每个子生成矩阵由
    
     
      
       
        k
       
       
        n
       
      
      
       kn
      
     
    kn个
    
     
      
       
        
         g
        
        
         m
        
        
         
          (
         
         
          i
         
         
          ,
         
         
          j
         
         
          )
         
        
       
      
      
       g^{(i,j)}_m
      
     
    gm(i,j)组成的
    
     
      
       
        k
       
       
        ×
       
       
        n
       
      
      
       k \times n
      
     
    k×n矩阵,
    
     
      
       
        
         g
        
        
         m
        
       
      
      
       g_m
      
     
    gm可以表示为:
     
      
       
        
         
          g
         
         
          m
         
        
        
         =
        
        
         
          [
         
         
          
           
            
             
              
               g
              
              
               m
              
              
               
                (
               
               
                1
               
               
                ,
               
               
                1
               
               
                )
               
              
             
            
           
           
            
             
              
               g
              
              
               m
              
              
               
                (
               
               
                1
               
               
                ,
               
               
                2
               
               
                )
               
              
             
            
           
           
            
             
              ⋯
             
            
           
           
            
             
              
               g
              
              
               m
              
              
               
                (
               
               
                1
               
               
                ,
               
               
                n
               
               
                )
               
              
             
            
           
          
          
           
            
             
              
               g
              
              
               m
              
              
               
                (
               
               
                2
               
               
                ,
               
               
                1
               
               
                )
               
              
             
            
           
           
            
             
              
               g
              
              
               m
              
              
               
                (
               
               
                2
               
               
                ,
               
               
                2
               
               
                )
               
              
             
            
           
           
            
             
              ⋯
             
            
           
           
            
             
              
               g
              
              
               m
              
              
               
                (
               
               
                2
               
               
                ,
               
               
                n
               
               
                )
               
              
             
            
           
          
          
           
            
             
              ⋮
             
             
              
             
            
           
           
            
             
              ⋮
             
             
              
             
            
           
           
            
             
              ⋱
             
            
           
           
            
             
              ⋮
             
             
              
             
            
           
          
          
           
            
             
              
               g
              
              
               m
              
              
               
                (
               
               
                k
               
               
                ,
               
               
                1
               
               
                )
               
              
             
            
           
           
            
             
              
               g
              
              
               m
              
              
               
                (
               
               
                k
               
               
                ,
               
               
                2
               
               
                )
               
              
             
            
           
           
            
             
              ⋯
             
            
           
           
            
             
              
               g
              
              
               m
              
              
               
                (
               
               
                k
               
               
                ,
               
               
                n
               
               
                )
               
              
             
            
           
          
         
         
          ]
         
        
       
       
        g_m= \begin{bmatrix} g^{(1,1)}_m&g^{(1,2)}_m&\cdots&g^{(1,n)}_m \\ g^{(2,1)}_m&g^{(2,2)}_m&\cdots&g^{(2,n)}_m \\ \vdots&\vdots&\ddots&\vdots \\ g^{(k,1)}_m&g^{(k,2)}_m&\cdots&g^{(k,n)}_m \end{bmatrix}
       
      
     gm=⎣⎢⎢⎢⎢⎡gm(1,1)gm(2,1)⋮gm(k,1)gm(1,2)gm(2,2)⋮gm(k,2)⋯⋯⋱⋯gm(1,n)gm(2,n)⋮gm(k,n)⎦⎥⎥⎥⎥⎤
   基本生成矩阵
    
     
      
       
        
         G
        
        
         B
        
       
      
      
       G_B
      
     
    GB:
    
     
      
       
        (
       
       
        n
       
       
        ,
       
       
        k
       
       
        ,
       
       
        N
       
       
        )
       
      
      
       (n,k,N)
      
     
    (n,k,N)卷积码的基本生成矩阵
    
     
      
       
        
         G
        
        
         B
        
       
      
      
       G_B
      
     
    GB由
    
     
      
       
        N
       
      
      
       N
      
     
    N个子生成矩阵
    
     
      
       
        
         g
        
        
         m
        
       
      
      
       g_m
      
     
    gm组成,是一个
    
     
      
       
        k
       
       
        ×
       
       
        N
       
       
        n
       
      
      
       k \times Nn
      
     
    k×Nn矩阵。
     
      
       
        
         
          G
         
         
          B
         
        
        
         =
        
        
         
          [
         
         
          
           
            
             
              
               g
              
              
               0
              
             
            
           
           
            
             
              
               g
              
              
               1
              
             
            
           
           
            
             
              ⋯
             
            
           
           
            
             
              
               g
              
              
               
                N
               
               
                −
               
               
                1
               
              
             
            
           
          
         
         
          ]
         
        
       
       
        G_B=\begin{bmatrix}g_0&g_1&\cdots&g_{N-1}\end{bmatrix}
       
      
     GB=[g0g1⋯gN−1]
   生成矩阵
    
     
      
       
        
         G
        
        
         ∞
        
       
      
      
       G_\infty
      
     
    G∞:
    
     
      
       
        (
       
       
        n
       
       
        ,
       
       
        k
       
       
        ,
       
       
        N
       
       
        )
       
      
      
       (n,k,N)
      
     
    (n,k,N)卷积码的生成矩阵
    
     
      
       
        
         G
        
        
         ∞
        
       
      
      
       G_\infty
      
     
    G∞是一个半无穷矩阵,
    
     
      
       
        
         G
        
        
         ∞
        
       
      
      
       G_\infty
      
     
    G∞可以表示为:
     
      
       
        
         
          G
         
         
          ∞
         
        
        
         =
        
        
         
          [
         
         
          
           
            
             
              
               g
              
              
               0
              
             
            
           
           
            
             
              
               g
              
              
               1
              
             
            
           
           
            
             
              ⋯
             
            
           
           
            
             
              
               g
              
              
               
                N
               
               
                −
               
               
                2
               
              
             
            
           
           
            
             
              
               g
              
              
               
                N
               
               
                −
               
               
                1
               
              
             
            
           
           
            
             
              0
             
            
           
           
            
             
              0
             
            
           
           
            
             
              0
             
            
           
           
            
             
              ⋯
             
            
           
          
          
           
            
             
              0
             
            
           
           
            
             
              
               g
              
              
               0
              
             
            
           
           
            
             
              
               g
              
              
               1
              
             
            
           
           
            
             
              ⋯
             
            
           
           
            
             
              
               g
              
              
               
                N
               
               
                −
               
               
                2
               
              
             
            
           
           
            
             
              
               g
              
              
               
                N
               
               
                −
               
               
                1
               
              
             
            
           
           
            
             
              0
             
            
           
           
            
             
              0
             
            
           
           
            
             
              ⋯
             
            
           
          
          
           
            
             
              0
             
            
           
           
            
             
              0
             
            
           
           
            
             
              
               g
              
              
               0
              
             
            
           
           
            
             
              
               g
              
              
               1
              
             
            
           
           
            
             
              ⋯
             
            
           
           
            
             
              
               g
              
              
               
                N
               
               
                −
               
               
                2
               
              
             
            
           
           
            
             
              
               g
              
              
               
                N
               
               
                −
               
               
                1
               
              
             
            
           
           
            
             
              0
             
            
           
           
            
             
              ⋯
             
            
           
          
          
           
            
             
              ⋯
             
            
           
           
            
             
              ⋯
             
            
           
           
            
             
              ⋯
             
            
           
           
            
             
              ⋯
             
            
           
           
            
             
              ⋯
             
            
           
           
            
             
              ⋯
             
            
           
           
            
             
              ⋯
             
            
           
           
            
             
              ⋯
             
            
           
           
            
             
              ⋯
             
            
           
          
         
         
          ]
         
        
       
       
        G_\infty= \begin{bmatrix} g_0&g_1&\cdots&g_{N-2 }&g_{N-1}&0&0&0&\cdots\\ 0&g_0&g_1&\cdots&g_{N-2 }&g_{N-1}&0&0&\cdots\\ 0&0&g_0&g_1&\cdots&g_{N-2 }&g_{N-1}&0&\cdots\\ \cdots&\cdots&\cdots&\cdots&\cdots&\cdots&\cdots&\cdots&\cdots \end{bmatrix}
       
      
     G∞=⎣⎢⎢⎡g000⋯g1g00⋯⋯g1g0⋯gN−2⋯g1⋯gN−1gN−2⋯⋯0gN−1gN−2⋯00gN−1⋯000⋯⋯⋯⋯⋯⎦⎥⎥⎤ 
    
     
      
       
        
         G
        
        
         ∞
        
       
      
      
       G_\infty
      
     
    G∞的每
    
     
      
       
        k
       
      
      
       k
      
     
    k行(
    
     
      
       
        
         g
        
        
         m
        
       
      
      
       g_m
      
     
    gm有
    
     
      
       
        k
       
      
      
       k
      
     
    k行)是前一
    
     
      
       
        k
       
      
      
       k
      
     
    k行向右移位
    
     
      
       
        n
       
      
      
       n
      
     
    n列(
    
     
      
       
        
         g
        
        
         m
        
       
      
      
       g_m
      
     
    gm有
    
     
      
       
        n
       
      
      
       n
      
     
    n列)的结果。
生成矩阵的作用
  假设移位寄存器的初态都是0,编码器对每组
    
     
      
       
        k
       
      
      
       k
      
     
    k个信息比特的输入产生一组
    
     
      
       
        n
       
      
      
       n
      
     
    n个编码比特输出。当第一组
    
     
      
       
        k
       
      
      
       k
      
     
    k个信息比特(用
    
     
      
       
        M
       
       
        (
       
       
        0
       
       
        )
       
      
      
       M(0)
      
     
    M(0)表示)输入时,输出为
    
     
      
       
        Y
       
       
        (
       
       
        0
       
       
        )
       
       
        =
       
       
        M
       
       
        (
       
       
        0
       
       
        )
       
       
        
         g
        
        
         0
        
       
      
      
       Y(0)=M(0)g_0
      
     
    Y(0)=M(0)g0(对比
    
     
      
       
        
         G
        
        
         ∞
        
       
      
      
       G_\infty
      
     
    G∞的第一列,观察规律),相当于
    
     
      
       
        M
       
       
        (
       
       
        0
       
       
        )
       
      
      
       M(0)
      
     
    M(0)中的
    
     
      
       
        k
       
      
      
       k
      
     
    k个比特输入到与其相连的模2和加法器后运算的结果。当第二组
    
     
      
       
        k
       
      
      
       k
      
     
    k个信息比特(用
    
     
      
       
        M
       
       
        (
       
       
        1
       
       
        )
       
      
      
       M(1)
      
     
    M(1)表示)输入时,前一组
    
     
      
       
        k
       
      
      
       k
      
     
    k个信息比特向后移位,输出为
    
     
      
       
        Y
       
       
        (
       
       
        1
       
       
        )
       
       
        =
       
       
        M
       
       
        (
       
       
        0
       
       
        )
       
       
        
         g
        
        
         1
        
       
       
        +
       
       
        M
       
       
        (
       
       
        1
       
       
        )
       
       
        
         g
        
        
         0
        
       
      
      
       Y(1)=M(0)g_1+M(1)g_0
      
     
    Y(1)=M(0)g1+M(1)g0(对比
    
     
      
       
        
         G
        
        
         ∞
        
       
      
      
       G_\infty
      
     
    G∞的第二列,观察规律),相当于
    
     
      
       
        M
       
       
        (
       
       
        0
       
       
        )
       
      
      
       M(0)
      
     
    M(0)和
    
     
      
       
        M
       
       
        (
       
       
        1
       
       
        )
       
      
      
       M(1)
      
     
    M(1)中的
    
     
      
       
        2
       
       
        k
       
      
      
       2k
      
     
    2k个比特输入到与其相连的模2和加法器后运算的结果。以此类推,可得
     
      
       
        
         Y
        
        
         (
        
        
         N
        
        
         )
        
        
         =
        
        
         M
        
        
         (
        
        
         0
        
        
         )
        
        
         
          g
         
         
          
           N
          
          
           −
          
          
           1
          
         
        
        
         +
        
        
         M
        
        
         (
        
        
         1
        
        
         )
        
        
         
          g
         
         
          
           N
          
          
           −
          
          
           2
          
         
        
        
         +
        
        
         ⋯
        
        
         +
        
        
         M
        
        
         (
        
        
         N
        
        
         −
        
        
         2
        
        
         )
        
        
         
          g
         
         
          1
         
        
        
         +
        
        
         M
        
        
         (
        
        
         N
        
        
         −
        
        
         1
        
        
         )
        
        
         
          g
         
         
          0
         
        
        
         (
        
        
         对
        
        
         比
        
        
         
          G
         
         
          ∞
         
        
        
         的
        
        
         第
        
        
         N
        
        
         列
        
        
         ,
        
        
         观
        
        
         察
        
        
         规
        
        
         律
        
        
         )
        
       
       
        Y(N)=M(0)g_{N-1}+M(1)g_{N-2 }+\cdots+M(N-2)g_1+M(N-1)g_0(对比G_\infty的第N列,观察规律)
       
      
     Y(N)=M(0)gN−1+M(1)gN−2+⋯+M(N−2)g1+M(N−1)g0(对比G∞的第N列,观察规律)此时,再有一组信息比特(用
    
     
      
       
        M
       
       
        (
       
       
        N
       
       
        )
       
      
      
       M(N)
      
     
    M(N)表示)输入时,
    
     
      
       
        M
       
       
        (
       
       
        0
       
       
        )
       
      
      
       M(0)
      
     
    M(0)被移除移位寄存器而消失。
 (我有点口拙,这块可能描述的不是很清楚,主要靠意会 😄,后面举例子)
举例
( n , 1 , N ) (n,1,N) (n,1,N)卷积码
  给定子生成元:
    
     
      
       
        
         g
        
        
         
          (
         
         
          1
         
         
          ,
         
         
          1
         
         
          )
         
        
       
       
        =
       
       
        10011
       
      
      
       g^{(1,1)}=10011
      
     
    g(1,1)=10011,
    
     
      
       
        
         g
        
        
         
          (
         
         
          1
         
         
          ,
         
         
          2
         
         
          )
         
        
       
       
        =
       
       
        11101
       
      
      
       g^{(1,2)}=11101
      
     
    g(1,2)=11101
   由子生成元可得:
    
     
      
       
        n
       
       
        =
       
       
        2
       
      
      
       n=2
      
     
    n=2,
    
     
      
       
        N
       
       
        =
       
       
        5
       
      
      
       N=5
      
     
    N=5
   生成元为:
    
     
      
       
        
         g
        
        
         
          (
         
         
          1
         
         
          )
         
        
       
       
        =
       
       
        11
        
       
        01
        
       
        01
        
       
        10
        
       
        11
       
      
      
       g^{(1)}=11\:01\:01\:10\:11
      
     
    g(1)=1101011011
   子生成矩阵为:
    
     
      
       
        
         g
        
        
         0
        
       
       
        =
       
       
        
         [
        
        
         
          
           
            
             11
            
           
          
         
        
        
         ]
        
       
      
      
       g_0=\begin{bmatrix}11\end{bmatrix}
      
     
    g0=[11],
    
     
      
       
        
         g
        
        
         1
        
       
       
        =
       
       
        
         [
        
        
         
          
           
            
             01
            
           
          
         
        
        
         ]
        
       
      
      
       g_1=\begin{bmatrix}01\end{bmatrix}
      
     
    g1=[01],
    
     
      
       
        
         g
        
        
         2
        
       
       
        =
       
       
        
         [
        
        
         
          
           
            
             01
            
           
          
         
        
        
         ]
        
       
      
      
       g_2=\begin{bmatrix}01\end{bmatrix}
      
     
    g2=[01],
    
     
      
       
        
         g
        
        
         3
        
       
       
        =
       
       
        
         [
        
        
         
          
           
            
             10
            
           
          
         
        
        
         ]
        
       
      
      
       g_3=\begin{bmatrix}10\end{bmatrix}
      
     
    g3=[10],
    
     
      
       
        
         g
        
        
         4
        
       
       
        =
       
       
        
         [
        
        
         
          
           
            
             11
            
           
          
         
        
        
         ]
        
       
      
      
       g_4=\begin{bmatrix}11\end{bmatrix}
      
     
    g4=[11]
   生成矩阵为:
     
      
       
        
         
          G
         
         
          ∞
         
        
        
         =
        
        
         
          [
         
         
          
           
            
             
              11
             
            
           
           
            
             
              01
             
            
           
           
            
             
              01
             
            
           
           
            
             
              10
             
            
           
           
            
             
              11
             
            
           
           
            
             
              00
             
            
           
           
            
             
              00
             
            
           
           
            
             
              00
             
            
           
           
            
             
              ⋯
             
            
           
          
          
           
            
             
              0
             
            
           
           
            
             
              11
             
            
           
           
            
             
              01
             
            
           
           
            
             
              01
             
            
           
           
            
             
              10
             
            
           
           
            
             
              11
             
            
           
           
            
             
              00
             
            
           
           
            
             
              00
             
            
           
           
            
             
              ⋯
             
            
           
          
          
           
            
             
              0
             
            
           
           
            
             
              0
             
            
           
           
            
             
              11
             
            
           
           
            
             
              01
             
            
           
           
            
             
              01
             
            
           
           
            
             
              10
             
            
           
           
            
             
              11
             
            
           
           
            
             
              00
             
            
           
           
            
             
              ⋯
             
            
           
          
          
           
            
             
              ⋯
             
            
           
           
            
             
              ⋯
             
            
           
           
            
             
              ⋯
             
            
           
           
            
             
              ⋯
             
            
           
           
            
             
              ⋯
             
            
           
           
            
             
              ⋯
             
            
           
           
            
             
              ⋯
             
            
           
           
            
             
              ⋯
             
            
           
           
            
             
              ⋯
             
            
           
          
         
         
          ]
         
        
       
       
        G_\infty= \begin{bmatrix} 11&01&01&10&11&00&00&00&\cdots\\ 0&11&01&01&10&11&00&00&\cdots\\ 0&0&11&01&01&10&11&00&\cdots\\ \cdots&\cdots&\cdots&\cdots&\cdots&\cdots&\cdots&\cdots&\cdots \end{bmatrix}
       
      
     G∞=⎣⎢⎢⎡1100⋯01110⋯010111⋯100101⋯111001⋯001110⋯000011⋯000000⋯⋯⋯⋯⋯⎦⎥⎥⎤
   编码器原理图为:
   当输入序列为
    
     
      
       
        m
       
       
        =
       
       
        110110000
       
       
        ⋯
       
      
      
       m=110110000\cdots
      
     
    m=110110000⋯时,输出序列为
    
     
      
       
        y
       
       
        =
       
       
        11
        
       
        10
        
       
        00
        
       
        00
        
       
        11
        
       
        11
        
       
        11
        
       
        01
        
       
        11
        
       
        00
        
       
        ⋯
       
      
      
       y=11\:10\:00\:00\:11\:11\:11\:01\:11\:00\:\cdots
      
     
    y=11100000111111011100⋯
( n , k , N ) (n,k,N) (n,k,N)卷积码
  给定子生成元:
     
      
       
        
         
          g
         
         
          
           (
          
          
           1
          
          
           ,
          
          
           1
          
          
           )
          
         
        
        
         =
        
        
         100
        
        
         ,
        
        
         
          g
         
         
          
           (
          
          
           1
          
          
           ,
          
          
           2
          
          
           )
          
         
        
        
         =
        
        
         000
        
        
         ,
        
        
         
          g
         
         
          
           (
          
          
           1
          
          
           ,
          
          
           3
          
          
           )
          
         
        
        
         =
        
        
         101
        
       
       
        g^{(1,1)}=100,g^{(1,2)}=000,g^{(1,3)}=101
       
      
     g(1,1)=100,g(1,2)=000,g(1,3)=101
     
      
       
        
         
          g
         
         
          
           (
          
          
           2
          
          
           ,
          
          
           1
          
          
           )
          
         
        
        
         =
        
        
         000
        
        
         ,
        
        
         
          g
         
         
          
           (
          
          
           2
          
          
           ,
          
          
           2
          
          
           )
          
         
        
        
         =
        
        
         100
        
        
         ,
        
        
         
          g
         
         
          
           (
          
          
           2
          
          
           ,
          
          
           3
          
          
           )
          
         
        
        
         =
        
        
         110
        
       
       
        g^{(2,1)}=000,g^{(2,2)}=100,g^{(2,3)}=110
       
      
     g(2,1)=000,g(2,2)=100,g(2,3)=110
   由子生成元可得:
    
     
      
       
        n
       
       
        =
       
       
        3
       
      
      
       n=3
      
     
    n=3,
    
     
      
       
        k
       
       
        =
       
       
        2
       
      
      
       k=2
      
     
    k=2,
    
     
      
       
        N
       
       
        =
       
       
        3
       
      
      
       N=3
      
     
    N=3
   生成元为:
     
      
       
        
         
          g
         
         
          
           (
          
          
           1
          
          
           )
          
         
        
        
         =
        
        
         101
         
        
         000
         
        
         001
        
       
       
        g^{(1)}=101\:000\:001
       
      
     g(1)=101000001
     
      
       
        
         
          g
         
         
          
           (
          
          
           2
          
          
           )
          
         
        
        
         =
        
        
         011
         
        
         001
         
        
         000
        
       
       
        g^{(2)}=011\:001\:000
       
      
     g(2)=011001000
   子生成矩阵为:
     
      
       
        
         
          g
         
         
          0
         
        
        
         =
        
        
         
          [
         
         
          
           
            
             
              1
             
            
           
           
            
             
              0
             
            
           
           
            
             
              1
             
            
           
          
          
           
            
             
              0
             
            
           
           
            
             
              1
             
            
           
           
            
             
              1
             
            
           
          
         
         
          ]
         
        
        
         ,
        
        
         
          g
         
         
          1
         
        
        
         =
        
        
         
          [
         
         
          
           
            
             
              0
             
            
           
           
            
             
              0
             
            
           
           
            
             
              0
             
            
           
          
          
           
            
             
              0
             
            
           
           
            
             
              0
             
            
           
           
            
             
              1
             
            
           
          
         
         
          ]
         
        
        
         ,
        
        
         
          g
         
         
          2
         
        
        
         =
        
        
         
          [
         
         
          
           
            
             
              0
             
            
           
           
            
             
              0
             
            
           
           
            
             
              1
             
            
           
          
          
           
            
             
              0
             
            
           
           
            
             
              0
             
            
           
           
            
             
              0
             
            
           
          
         
         
          ]
         
        
       
       
        g_0=\begin{bmatrix}1&0&1\\0&1&1\end{bmatrix},g_1=\begin{bmatrix}0&0&0\\0&0&1\end{bmatrix},g_2=\begin{bmatrix}0&0&1\\0&0&0\end{bmatrix}
       
      
     g0=[100111],g1=[000001],g2=[000010]
   生成矩阵为:
     
      
       
        
         
          G
         
         
          ∞
         
        
        
         =
        
        
         
          [
         
         
          
           
            
             
              101
             
            
           
           
            
             
              000
             
            
           
           
            
             
              001
             
            
           
           
            
             
              000
             
            
           
           
            
             
              000
             
            
           
           
            
             
              000
             
            
           
           
            
             
              ⋯
             
            
           
          
          
           
            
             
              011
             
            
           
           
            
             
              001
             
            
           
           
            
             
              000
             
            
           
           
            
             
              000
             
            
           
           
            
             
              000
             
            
           
           
            
             
              000
             
            
           
           
            
             
              ⋯
             
            
           
          
          
           
            
             
              000
             
            
           
           
            
             
              101
             
            
           
           
            
             
              000
             
            
           
           
            
             
              001
             
            
           
           
            
             
              000
             
            
           
           
            
             
              000
             
            
           
           
            
             
              ⋯
             
            
           
          
          
           
            
             
              000
             
            
           
           
            
             
              011
             
            
           
           
            
             
              001
             
            
           
           
            
             
              000
             
            
           
           
            
             
              000
             
            
           
           
            
             
              000
             
            
           
           
            
             
              ⋯
             
            
           
          
          
           
            
             
              000
             
            
           
           
            
             
              000
             
            
           
           
            
             
              101
             
            
           
           
            
             
              000
             
            
           
           
            
             
              001
             
            
           
           
            
             
              000
             
            
           
           
            
             
              ⋯
             
            
           
          
          
           
            
             
              000
             
            
           
           
            
             
              000
             
            
           
           
            
             
              011
             
            
           
           
            
             
              001
             
            
           
           
            
             
              000
             
            
           
           
            
             
              000
             
            
           
           
            
             
              ⋯
             
            
           
          
          
           
            
             
              ⋯
             
            
           
           
            
             
              ⋯
             
            
           
           
            
             
              ⋯
             
            
           
           
            
             
              ⋯
             
            
           
           
            
             
              ⋯
             
            
           
           
            
             
              ⋯
             
            
           
           
            
             
              ⋯
             
            
           
          
         
         
          ]
         
        
       
       
        G_\infty= \begin{bmatrix} 101&000&001&000&000&000&\cdots\\ 011&001&000&000&000&000&\cdots\\ 000&101&000&001&000&000&\cdots\\ 000&011&001&000&000&000&\cdots\\ 000&000&101&000&001&000&\cdots\\ 000&000&011&001&000&000&\cdots\\ \cdots&\cdots&\cdots&\cdots&\cdots&\cdots&\cdots \end{bmatrix}
       
      
     G∞=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎡101011000000000000⋯000001101011000000⋯001000000001101011⋯000000001000000001⋯000000000000001000⋯000000000000000000⋯⋯⋯⋯⋯⋯⋯⋯⎦⎥⎥⎥⎥⎥⎥⎥⎥⎤
   编码器原理图为:
   当输入序列为
    
     
      
       
        m
       
       
        =
       
       
        10
        
       
        11
        
       
        00
        
       
        00
       
       
        ⋯
       
      
      
       m=10\:11\:00\:00\cdots
      
     
    m=10110000⋯时,输出序列为
    
     
      
       
        y
       
       
        =
       
       
        101
        
       
        110
        
       
        000
        
       
        001
        
       
        000
        
       
        ⋯
       
      
      
       y=101\:110\:000\:001\:000\:\cdots
      
     
    y=101110000001000⋯
参考:卷积码
    通信原理(第二版)张会生 著
                  
                  
                  
                  
                            
本文深入解析卷积码的原理及应用,包括卷积码的编码过程、编码器结构、生成矩阵概念及其作用,通过具体实例帮助理解卷积码在通信系统中的编码与解码过程。
          
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
              
            
                  
					2541
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
            


            