前言:
这篇主要参考《武汉科技大学信息学院向森》的卷积码系列。
后面会继续分享一些海外教授对卷积码的研究.
参考
14.卷积码-卷积码概念和多种描述方式_哔哩哔哩_bilibili
15.卷积码-卷积码的概率译码原理_哔哩哔哩_bilibili
(n,k,N)卷积码的生成矩阵_Chenxr32的博客-CSDN博客_卷积码的生成矩阵怎么求
目录:
1: 卷积码概念以及描述方法
2: 译码原理
3: 译码判决
4: 维特比译码
5: 生成矩阵
一 卷积码概念以及描述方法
1.1 概念
定义(n,k,L)
输入k个比特,输出n个比特,移位寄存器个数为L, 历史状态为L-1个
输出由 决定
1.2 状态图
1.3 状态转移图
矩形框中 表示编码器当前的状态
-> 表示状态转移的方向
箭头上的参数分别表示 编码输入|编码输出
卷积码的状态图可以用于分析卷积码的性能
1.4 网格图
状态转移图看不到随时序变化的编码过程
输入为0,沿着上分支到下一个状态
输入为1,沿着下分支到下一个状态
一个参数为(n,k,N)的卷积码,共有N-1级缓存(去除当前信息位缓存)
每级缓存k个存储单元,共有k(N-1)位用于存储 历史数据,则共有
个不同状态,每个状态有个到达和离去的分支
状态和分支的数目随着k和N 指数级增加,因此避免编译码的复杂化,
每个编码信息分组的位数k和编码输出的分组长度n 都取一个比较小的值
例题:
二 译码原理
维特比是一种最大似然译码的方法,
我们发送的码字为,收到的码字为。
3.1 概率译码的原理
基于收到的码字预测出发送码字,使得其概率最大
当码元之间相互独立
比如(2,1,2)4次输入,对应的输出为11 10 00 10
m = 4
概率论基础
发送码字: 包含k个比特信息码字的集合
信源的先验概率
接收信号:
后验概率
: 收到的码字为,发送的码字为的概率
转移概率
发送码字为,收到的码字为的概率
贝叶斯公式
因为 为先验概率,认为是一个常数,经常用
最大似然译码
三 译码判决
3.1 数字通讯基本组成
3.2 发送流程:
经过信道编码后,为0,1的比特流,以QPSK为例,
会把0调制成电平幅度为-1,1调制成电平幅度为1的模拟信号(跟印度NTPL讲的相反)
其中 代表发送的是0,通常A为1,发送的时候
通常假设信道是高斯白噪声n
则接收到的信号的概率密度图如下
3.3 接收方解调器判决
接收方解调器收到的是模拟的波形,需要解调出数字信号,这个时候就需要判决。
有两种方案,硬判决和软判决。
硬判决给出的是一个离散值
软判决给出的是llr 概率值
收到的信号为:
解调器 硬判决
缺点:
如下与A的距离远近不同,也是其实际为1的概率不同
如果为硬判决都判决为1,但是其置信度不同,在差错控制译码时候
无法利用。
3.4 最大似然硬判决译码
这里面主要是信道解码器基于硬判决的结果,做最大似然计算
译码得到二进制序列。
假设信号的误码率P 为已知固定
接收码字序列长度为M,假设有位不同,位一样
(这里面跟二项分布不一样,少了 )
这里面错误概率一般认为是小于0.5,所以
最大似然判决:
取满足下式的作为判决输出
则 必须最小
3.5 最大似然软判决
这里面r 是一个连续的电平值
硬判决是码字间的汉明距离
软判决是码字间的欧式距离(电平差)
四 维特比译码
4.1 设卷积码参数为(n,k,L)
: 输入信息的长度
码字的信息比特:
码字空间大小:
输出码字总长度为:
例1 :
输入 01000:
(2,1,2) ,码字的可能组合为
4.2 维特比译码思想
理论上网格图共有 条路径(一个状态:0 为一条路径,1位1条路径,共2条)
维特比译码过程接收码字中一个码组,进行一次比较,比较后
选择若干最可能获得正确译码结果的码段做后续比较
通过删除大量获得正确译码可能性小的码段,达到减少运算量的目的。
4.3 结尾卷积码序列
参数为(n,k,L)的卷积码,在编码完信息码后,结尾继续输入L-1个0字符,
使得编码路径返回全0 状态
例: (2,1,3)结尾的序列:
最后会处于a,b,c,d 4种状态,连续输入两个0,最后会以a状态结尾
4.4 算法流程:
st1:
输入一个n位的编码码组,计算码组输入后新到达每个状态的个可能选留路径的度量值
每个状态仅保留其中度量值最大的路径作为选留路径。
如有相同值的路径,则任选其一.(实际只有一种路径,如果优化?)
度量值可根据选留路径与输入序列的相似程度来确定:
两者越相似,度量值越大
st2 译码时间参数t =t+1
if
go st1
else
return
st3 : 输出
根据获得的最后一留选路径,获得相应的译码输出码字
5.5 定理
维特比译码算法: 获得的幸存路径是具有最大似然函数的路径
证明:
设有最大似然函数的路径a,在时刻k,进入状态Sm被删除了。
则一定有另一条路径b的度量值超过了路径a的度量值。
即有到达状态Sm的最大似然函数的路径a与输入序列的距离,
大于另一条路径b与输入序列的距离.
则最大似然函数路径的剩余部分c(从时刻k到路径结束的部分)与路径b的度量值相加得到
总的路径度量值超过最大似然函数的总度量值,这与最大似然路径有最大度量值的定义是相互矛盾的,因此是不可能的。
根据该算法得到的一定时最大似然路径
五 生成矩阵
5.1 子生成矩阵
(n,k,N)卷积码有N个子生成矩阵
假设输入为
通过第m个寄存器,有n种编码输出
5.2 基本生成矩阵
有N个输入寄存器组,则基本生成矩阵为:
5.3 生成矩阵
5.4: 生成元
5.5 子生成元
其中:
: m组输入寄存器比特的第i位与第j位个模二加法
5.6 例子
说明:
子生成元
= 1 0 0 1 1
= 1 1 1 0 1
生成元
就是按列取元素叠加