影响机器学习模型效果的因素
3.1 基本问题:理解函数逼近
数据清洗和特征工程
特征工程一般需要通过一个由人工参与的、迭代的过程来完成特征选择,决定可能最优的特征,并且尝试不同的特征组合。
3.2 影响算法选择及性能的因素---复杂度以及数据
选择一个算法:线性或者非线性
3.3 度量预测模型性能
最常用的错误摘要是均方误差(MSE)以及平均绝对错误(MAE)
3.4 模型与数据的均衡
使用普通最小乘法来构建分类器
影响机器学习模型效果的因素
数据清洗和特征工程
特征工程一般需要通过一个由人工参与的、迭代的过程来完成特征选择,决定可能最优的特征,并且尝试不同的特征组合。
选择一个算法:线性或者非线性
最常用的错误摘要是均方误差(MSE)以及平均绝对错误(MAE)
使用普通最小乘法来构建分类器