Python预测分析(2):预测模型的构建--平衡性能、复杂性以及大数据

      影响机器学习模型效果的因素

3.1 基本问题:理解函数逼近

      数据清洗和特征工程

      特征工程一般需要通过一个由人工参与的、迭代的过程来完成特征选择,决定可能最优的特征,并且尝试不同的特征组合。

3.2 影响算法选择及性能的因素---复杂度以及数据

      选择一个算法:线性或者非线性

3.3 度量预测模型性能

     最常用的错误摘要是均方误差(MSE)以及平均绝对错误(MAE)

3.4 模型与数据的均衡

      使用普通最小乘法来构建分类器

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值