自编码实例5:栈式自编码

       栈式自编码神经网络(Stacked Autoencoder, SA),是对自编码网络的一种使用方法,是一个由多层训练好的自编码器组成的神经网络。由于网络中的每一层都是单独训练而来,相当于都初始化了一个合理的数值。所以,这样的网络会更容易训练,并且有更快的收敛性及更高的准确度。

       栈式自编码常常被用于预训练(初始化)深度神经网络之前的权重预训练步骤。例如在一个分类问题上,可以按照从前向后的顺序执行每一层通过自编码器来训练,最终将网络中最深层的输出作为softmax分类器的输入特征,通过softmax层将其分开。

       为了使这个过程容易理解,下面以训练一个包含两个隐含层的栈式自编码网络为例。

(1)训练一个自编码器,得到原始输入的一阶特征表示h。

(2)将上一步输出的特征h作为输入,对其进行再一次的自编码,并同时获取特征h

(3)把上一步的特征h连上softmax分类器

(4)把这3层结合起来,就构成了一个包含两个隐藏层加一个softmax的栈式自编码网络

常用方法:代替和级联。

实例:首先建立一个去噪自编码,然后再对第一层的输出做一次简单的自编码压缩,然后再将第二层的输出做一个softmax的分类,最后,把这3个网络里的中间层拿出来,组成一个新的网络进行微调

import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("/data/", one_hot=True)

train_X   = mnist.train.images
train_Y = mnist.train.labels
test_X    = mnist.test.images
test_Y  = mnist.test.labels
print ("MNIST ready")

tf.reset_default_graph()
# 参数
n_input    = 784 
n_hidden_1 = 256 #第一层自编码
n_hidden_2 = 128 #第二层自编码
n_classes = 10

# 第一层
x = tf.placeholder("float", [None, n_input])
y = tf.placeholder("float", [None, n_input])
dropout_keep_prob = tf.placeholder("float")
# 第二层
l2x = tf.placeholder("float", [None, n_hidden_1])
l2y = tf.placeholder("float", [None, n_hidden_1])
# 第三层
l3x = tf.placeholder("float", [None, n_hidden_2])
l3y = tf.placeholder("float", [None, n_classes])

# WEIGHTS
weights = {
    #网络1  784-256-784
    'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
    'l1_h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_1])),
    'l1_out': tf.Variable(tf.random_normal([n_hidden_1, n_input])),
    #网络2  256-128-256
    'l2_h1': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
    'l2_h2': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_2])),
    'l2_out': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])),
    #网络3  128-10
    'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes]))
}
biases = {
    'b1': tf.Variable(tf.zeros([n_hidden_1])),
    'l1_b2': tf.Variable(tf.zeros([n_hidden_1])),
    'l1_out': tf.Variable(tf.zeros([n_input])),
    
    'l2_b1': tf.Variable(tf.zeros([n_hidden_2])),
    'l2_b2': tf.Variable(tf.zeros([n_hidden_2])),
    'l2_out': tf.Variable(tf.zeros([n_hidden_1])),
    
    'out': tf.Variable(tf.zeros([n_classes]))
}
#第一层的编码输出
l1_out = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['h1']), biases['b1'])) 
#l1 编码
def noise_l1_autodecoder(layer_1, _weights, _biases, _keep_prob):
    layer_1out = tf.nn.dropout(layer_1, _keep_prob) 
    layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1out, _weights['l1_h2']), _biases['l1_b2'])) 
    layer_2out = tf.nn.dropout(layer_2, _keep_prob) 
    return tf.nn.sigmoid(tf.matmul(layer_2out, _weights['l1_out']) + _biases['l1_out'])
# 第一层的解码输出
l1_reconstruction = noise_l1_autodecoder(l1_out, weights, biases, dropout_keep_prob)
# 计算损失
l1_cost = tf.reduce_mean(tf.pow(l1_reconstruction-y, 2))
l1_optm = tf.train.AdamOptimizer(0.01).minimize(l1_cost) 
#第二层的编码输出
def l2_autodecoder(layer1_2, _weights, _biases):
    layer1_2out = tf.nn.sigmoid(tf.add(tf.matmul(layer1_2, _weights['l2_h2']), _biases['l2_b2'])) 
    return tf.nn.sigmoid(tf.matmul(layer1_2out, _weights['l2_out']) + _biases['l2_out'])
l2_out = tf.nn.sigmoid(tf.add(tf.matmul(l2x, weights['l2_h1']), biases['l2_b1'])) 
# 第二层的解码输出
l2_reconstruction = l2_autodecoder(l2_out, weights, biases)
l2_cost = tf.reduce_mean(tf.pow(l2_reconstruction-l2y, 2))
optm2 = tf.train.AdamOptimizer(0.01).minimize(l2_cost) 
#l3  分类
l3_out = tf.matmul(l3x, weights['out']) + biases['out']
l3_cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=l3_out, labels=l3y))
l3_optm = tf.train.AdamOptimizer(0.01).minimize(l3_cost)
#3层 级联
#1联2
l1_l2out = tf.nn.sigmoid(tf.add(tf.matmul(l1_out, weights['l2_h1']), biases['l2_b1'])) 
# 2联3
pred = tf.matmul(l1_l2out, weights['out']) + biases['out']
cost3 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=l3y))
optm3 = tf.train.AdamOptimizer(0.001).minimize(cost3)
print ("l3 级联 ")
# 训练
epochs     = 50
batch_size = 100
disp_step  = 10
load_epoch =49

第一层训练

# 第一层训练
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    print ("开始训练")
    for epoch in range(epochs):
        num_batch  = int(mnist.train.num_examples/batch_size)
        total_cost = 0.
        for i in range(num_batch):
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)
            batch_xs_noisy = batch_xs + 0.3*np.random.randn(batch_size, 784)
            feeds = {x: batch_xs_noisy, y: batch_xs, dropout_keep_prob: 0.5}
            sess.run(l1_optm, feed_dict=feeds)
            total_cost += sess.run(l1_cost, feed_dict=feeds)
        # DISPLAY
        if epoch % disp_step == 0:
            print ("Epoch %02d/%02d average cost: %.6f" 
                   % (epoch, epochs, total_cost/num_batch))
    print(sess.run(weights['h1'])) 
    print (weights['h1'].name)   
    print ("完成")    
    show_num = 10
    test_noisy = mnist.test.images[:show_num] + 0.3*np.random.randn(show_num, 784)
    encode_decode = sess.run(
        l1_reconstruction, feed_dict={x: test_noisy, dropout_keep_prob: 1.})
    f, a = plt.subplots(3, 10, figsize=(10, 3))
    for i in range(show_num):
        a[0][i].imshow(np.reshape(test_noisy[i], (28, 28)))
        a[1][i].imshow(np.reshape(mnist.test.images[i], (28, 28)))
        a[2][i].matshow(np.reshape(encode_decode[i], (28, 28)), cmap=plt.get_cmap('gray'))
    plt.show()

第二层训练

# 第二层训练
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    print ("开始训练")
    for epoch in range(epochs):
        num_batch  = int(mnist.train.num_examples/batch_size)
        total_cost = 0.
        for i in range(num_batch):
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)

            l1_h = sess.run(l1_out, feed_dict={x: batch_xs, y: batch_xs, dropout_keep_prob: 1.})
            _,l2cost = sess.run([optm2,l2_cost], feed_dict={l2x: l1_h, l2y: l1_h })
            total_cost += l2cost
       
       # log
        if epoch % disp_step == 0:
            print ("Epoch %02d/%02d average cost: %.6f" 
                   % (epoch, epochs, total_cost/num_batch))     
    print(sess.run(weights['h1'])) 
    print (weights['h1'].name)  
    print ("完成  layer_2 训练")
    show_num = 10
    testvec = mnist.test.images[:show_num]
    out1vec = sess.run(l1_out, feed_dict={x: testvec,y: testvec, dropout_keep_prob: 1.})
    out2vec = sess.run(l2_reconstruction, feed_dict={l2x: out1vec})
    f, a = plt.subplots(3, 10, figsize=(10, 3))
    for i in range(show_num):
        a[0][i].imshow(np.reshape(testvec[i], (28, 28)))
        a[1][i].matshow(np.reshape(out1vec[i], (16, 16)), cmap=plt.get_cmap('gray'))
        a[2][i].matshow(np.reshape(out2vec[i], (16, 16)), cmap=plt.get_cmap('gray'))
    plt.show()

第三层训练

# 第三层
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    print ("开始训练")
    for epoch in range(epochs):
        num_batch  = int(mnist.train.num_examples/batch_size)
        total_cost = 0.
        for i in range(num_batch):
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)               
            l1_h = sess.run(l1_out, feed_dict={x: batch_xs, y: batch_xs, dropout_keep_prob: 1.})               
            l2_h = sess.run(l2_out, feed_dict={l2x: l1_h, l2y: l1_h })
            _,l3cost = sess.run([l3_optm,l3_cost], feed_dict={l3x: l2_h, l3y: batch_ys})
            total_cost += l3cost
        # DISPLAY
        if epoch % disp_step == 0:
            print ("Epoch %02d/%02d average cost: %.6f" 
                   % (epoch, epochs, total_cost/num_batch))
    print ("完成  layer_3 训练")
    # 测试 model
    correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(l3y, 1))
    # 计算准确率
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    print ("Accuracy:", accuracy.eval({x: mnist.test.images, l3y: mnist.test.labels}))

级联微调

# 级联微调
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    print ("开始训练")
    for epoch in range(epochs):
        num_batch  = int(mnist.train.num_examples/batch_size)
        total_cost = 0.
        for i in range(num_batch):
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)
            feeds = {x: batch_xs, l3y: batch_ys}
            sess.run(optm3, feed_dict=feeds)
            total_cost += sess.run(cost3, feed_dict=feeds)
        # DISPLAY
        if epoch % disp_step == 0:
            print ("Epoch %02d/%02d average cost: %.6f" 
                   % (epoch, epochs, total_cost/num_batch))
    print ("完成  级联 训练")
    # 测试 model
    correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(l3y, 1))
    # 计算准确率
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    print ("Accuracy:", accuracy.eval({x: mnist.test.images, l3y: mnist.test.labels}))
开始训练
Epoch 00/50 average cost: 1.544741
Epoch 10/50 average cost: 0.070898
Epoch 20/50 average cost: 0.010157
Epoch 30/50 average cost: 0.001123
Epoch 40/50 average cost: 0.000119
完成  级联 训练
Accuracy: 0.9613

可以看到,由于网络模型中各层的初始值已经训练好了,所以开始就是很低的错误率。

 

  • 5
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值