【opencv学习笔记】第六篇:分离颜色通道、多通道图像混合和图像对比度、亮度值的调整

为了更好地观察一些图像材料的特征,有时需要对RGB三个颜色通道的分量分别进行显示和调整。通过OpenCV的split和merge方法可以很方便地达到目的。

1. 通道分离:split()函数

split()函数用于将一个多通道数组分离成几个单通道数组,公式如下:
m v [ c ] ( I ) = s r c ( I ) mv[c](I) = src(I) mv[c](I)=src(I)

split()函数原型如下:

C++: void split(const Mat& src, Mat*mvbegin);
C++: void split(InputArray m,OutputArrayOfArrays mv);

解释说明:

  • InputArray 类型或 Mat& 类型的 src,为我们需要进行通道分离的多通道数组(图像)
  • OutputArrayOfArrays 类型的 mv,为输出数组或输出的 vector 容器。

2. 通道合并:merge()函数

merge()函数是split()函数的逆向操作——将多个数组合并成一个多通道的数组。它通过组合一些给定的单通道数组,将这些孤立的单通道数组合并成一个多通道的数组,从而创建出一个由多个单通道阵列组成的多通道阵列。

它的函数原型如下:

void merge(const Mat* mv, size_t count, OutputArray dst);
void merge(InputArrayOfArrays mv, OutputArray dst);

解释说明:

  • 第一个参数,为需要合并的输入矩阵或 vector 容器。mv中要求具有一样的尺寸和深度。
  • 第二个参数,count当 mv 为一个空白的C数组时,代表输入矩阵的个数(大于1)。
  • 第三个参数,dst为合并后的输出矩阵,通道数为各输入矩阵或 vector 通道的总和。

3. 通道分离和合并的代码示例

下面的代码为split和merge使用举例,先输入一幅图像,然后分别显示RGB分量图。split和merge之后原图保持不变。

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>

using namespace cv;
using namespace std;

int main()
{
	Mat srcImage;
	Mat logoImage;
	vector<Mat> channels;
	Mat  imageBlueChannel;
    Mat imageGreedChannel;
	Mat imageRedChannel;

    srcImage = imread("/home/liqiang/Data/vision/classic/lena.jpg");//512*512
	if (!srcImage.data) { printf("读取srcImage错误~! \n"); return false; }

	split(srcImage, channels);//分离色彩通道

	imageBlueChannel = channels.at(0);
    imageGreedChannel = channels.at(1);
    imageRedChannel = channels.at(2);

	//将三个独立的单通道重新合并成一个三通道
	merge(channels, srcImage);///split和merge之后保持不变

    imshow("原图", srcImage);
    imshow("R分量图", imageRedChannel);
    imshow("G分量图", imageGreedChannel);
    imshow("B分量图", imageBlueChannel);

	waitKey(0);

	return 0;
}

输出效果图:

在这里插入图片描述

4. 图像对比度、亮度值调整

图像对比度和图像亮度属于图像处理变换中比较简单的一种,即点操作(point operators),点操作算子包括亮度(brightness)和对比度(contrast)调整、颜色矫正(color correction) 和变换(transformations)。

亮度和对比度点操作(点算子)是乘以一个常数(对比度)以及加上一个常数(亮度),公式如下:
g ( x ) = a ∗ f ( x ) + b g(x) = a*f(x) + b g(x)=af(x)+b
其中f(x)为输入图像,g(x)为输出图像。a(a>0)被称为增益(gain),也就是控制对比度参数,参数b被称为偏置(bias),常常被用来控制图像亮度。

下面结合轨迹条来控制对比度和亮度,saturate_cast<>的作用是防止溢出。代码示例如下:

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>

using namespace std;
using namespace cv;

static void ContrastAndBright(int, void *);
void   ShowHelpText();

int g_nContrastValue; //对比度值
int g_nBrightValue;  //亮度值
Mat g_srcImage,g_dstImage;

int main(   )
{
	// 读入用户提供的图像
	g_srcImage = imread("/home/liqiang/Data/vision/classic/lena.jpg");//512*512
	if( !g_srcImage.data ) { printf("读取g_srcImage图片错误~! \n"); return false; }
	g_dstImage = Mat::zeros( g_srcImage.size(), g_srcImage.type() );

	//设定对比度和亮度的初值
	g_nContrastValue=80;
	g_nBrightValue=80;

	//创建窗口
	namedWindow("【效果图窗口】", 1);

	//创建轨迹条
	createTrackbar("对比度:", "【效果图窗口】",&g_nContrastValue, 300,ContrastAndBright );
	createTrackbar("亮   度:", "【效果图窗口】",&g_nBrightValue, 200,ContrastAndBright );

	//调用回调函数
	ContrastAndBright(g_nContrastValue,0);
	ContrastAndBright(g_nBrightValue,0);
	
	cout<<endl<<"\t运行成功,请调整滚动条观察图像效果\n\n"
		<<"\t按下“q”键时,程序退出\n";

	//按下“q”键时,程序退出
	while(char(waitKey(1)) != 'q') {}
	return 0;
}

//-----------------------------【ContrastAndBright( )函数】------------------------------------
//	描述:改变图像对比度和亮度值的回调函数
//-----------------------------------------------------------------------------------------------
static void ContrastAndBright(int, void *)
{
	// 创建窗口
	namedWindow("【原始图窗口】", 1);
	// 三个for循环,执行运算 g_dstImage(i,j) = a*g_srcImage(i,j) + b
	for( int y = 0; y < g_srcImage.rows; y++ )
	{
		for( int x = 0; x < g_srcImage.cols; x++ )
		{
			for( int c = 0; c < 3; c++ )
			{
				g_dstImage.at<Vec3b>(y,x)[c] = saturate_cast<uchar>( (g_nContrastValue*0.01)*( g_srcImage.at<Vec3b>(y,x)[c] ) + g_nBrightValue );
			}
		}
	}
	// 显示图像
	imshow("【原始图窗口】", g_srcImage);
	imshow("【效果图窗口】", g_dstImage);
}

输出效果图:
在这里插入图片描述

5. convertTo调整图像对比度和亮度

另外使用opencv函数convertTo也可以实现对比度和亮度的调整。使用形式如下:

void Mat::convertTo( Mat& m, int rtype, double alpha=1, double beta=0 ) const;
  • m:目标矩阵。
  • rtype 指定从原矩阵进行转换后的数据类型,即目标矩阵m的数据类型。
  • alpha 缩放因子。默认值是1。即把原矩阵中的每一个元素都乘以alpha。
  • beta 增量。默认值是0。即把原矩阵中的每一个元素都乘以alpha,再加上beta。

使用示例如下:

#include <iostream>  
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;
 
double alpha; /**< 控制对比度 */
int beta;  /**< 控制亮度 */
int main()
{	
	Mat image = imread("2.png",CV_LOAD_IMAGE_UNCHANGED);
	if (image.empty()){
		cout << "图像加载失败" << endl;
	}
    Mat imageConvert;
	image.convertTo(imageConvert, image.type(), 1, 50);
    namedWindow("转换后图像", 1);
	imshow("转换后图像", imageConvert);
	
	waitKey();
	return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

非晚非晚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值