为了更好地观察一些图像材料的特征,有时需要对RGB三个颜色通道的分量分别进行显示和调整。通过OpenCV的split和merge方法可以很方便地达到目的。
1. 通道分离:split()函数
split()函数用于将一个多通道数组分离成几个单通道数组,公式如下:
m
v
[
c
]
(
I
)
=
s
r
c
(
I
)
mv[c](I) = src(I)
mv[c](I)=src(I)
split()函数原型如下:
C++: void split(const Mat& src, Mat*mvbegin);
C++: void split(InputArray m,OutputArrayOfArrays mv);
解释说明:
- InputArray 类型或 Mat& 类型的 src,为我们需要进行通道分离的
多通道数组(图像)
- OutputArrayOfArrays 类型的 mv,为输出数组或输出的 vector 容器。
2. 通道合并:merge()函数
merge()函数是split()函数的逆向操作——将多个数组合并成一个多通道的数组。它通过组合一些给定的单通道数组,将这些孤立的单通道数组合并成一个多通道的数组,从而创建出一个由多个单通道阵列组成的多通道阵列。
它的函数原型如下:
void merge(const Mat* mv, size_t count, OutputArray dst);
void merge(InputArrayOfArrays mv, OutputArray dst);
解释说明:
- 第一个参数,为需要合并的
输入矩阵或 vector 容器
。mv中要求具有一样的尺寸和深度。- 第二个参数,count当 mv 为一个空白的C数组时,代表输入矩阵的个数(大于1)。
- 第三个参数,dst为合并后的
输出矩阵
,通道数为各输入矩阵或 vector 通道的总和。
3. 通道分离和合并的代码示例
下面的代码为split和merge使用举例,先输入一幅图像,然后分别显示RGB分量图。split和merge之后原图保持不变。
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>
using namespace cv;
using namespace std;
int main()
{
Mat srcImage;
Mat logoImage;
vector<Mat> channels;
Mat imageBlueChannel;
Mat imageGreedChannel;
Mat imageRedChannel;
srcImage = imread("/home/liqiang/Data/vision/classic/lena.jpg");//512*512
if (!srcImage.data) { printf("读取srcImage错误~! \n"); return false; }
split(srcImage, channels);//分离色彩通道
imageBlueChannel = channels.at(0);
imageGreedChannel = channels.at(1);
imageRedChannel = channels.at(2);
//将三个独立的单通道重新合并成一个三通道
merge(channels, srcImage);///split和merge之后保持不变
imshow("原图", srcImage);
imshow("R分量图", imageRedChannel);
imshow("G分量图", imageGreedChannel);
imshow("B分量图", imageBlueChannel);
waitKey(0);
return 0;
}
输出效果图:
4. 图像对比度、亮度值调整
图像对比度和图像亮度属于图像处理变换中比较简单的一种,即点操作(point operators),点操作算子包括亮度(brightness)和对比度(contrast)调整、颜色矫正(color correction) 和变换(transformations)。
亮度和对比度点操作(点算子)是乘以一个常数(对比度)以及加上一个常数(亮度),公式如下:
g
(
x
)
=
a
∗
f
(
x
)
+
b
g(x) = a*f(x) + b
g(x)=a∗f(x)+b
其中f(x)为输入图像,g(x)为输出图像。a(a>0)被称为增益(gain),也就是控制对比度参数,参数b被称为偏置(bias),常常被用来控制图像亮度。
下面结合轨迹条来控制对比度和亮度,saturate_cast<>的作用是防止溢出。代码示例如下:
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
using namespace std;
using namespace cv;
static void ContrastAndBright(int, void *);
void ShowHelpText();
int g_nContrastValue; //对比度值
int g_nBrightValue; //亮度值
Mat g_srcImage,g_dstImage;
int main( )
{
// 读入用户提供的图像
g_srcImage = imread("/home/liqiang/Data/vision/classic/lena.jpg");//512*512
if( !g_srcImage.data ) { printf("读取g_srcImage图片错误~! \n"); return false; }
g_dstImage = Mat::zeros( g_srcImage.size(), g_srcImage.type() );
//设定对比度和亮度的初值
g_nContrastValue=80;
g_nBrightValue=80;
//创建窗口
namedWindow("【效果图窗口】", 1);
//创建轨迹条
createTrackbar("对比度:", "【效果图窗口】",&g_nContrastValue, 300,ContrastAndBright );
createTrackbar("亮 度:", "【效果图窗口】",&g_nBrightValue, 200,ContrastAndBright );
//调用回调函数
ContrastAndBright(g_nContrastValue,0);
ContrastAndBright(g_nBrightValue,0);
cout<<endl<<"\t运行成功,请调整滚动条观察图像效果\n\n"
<<"\t按下“q”键时,程序退出\n";
//按下“q”键时,程序退出
while(char(waitKey(1)) != 'q') {}
return 0;
}
//-----------------------------【ContrastAndBright( )函数】------------------------------------
// 描述:改变图像对比度和亮度值的回调函数
//-----------------------------------------------------------------------------------------------
static void ContrastAndBright(int, void *)
{
// 创建窗口
namedWindow("【原始图窗口】", 1);
// 三个for循环,执行运算 g_dstImage(i,j) = a*g_srcImage(i,j) + b
for( int y = 0; y < g_srcImage.rows; y++ )
{
for( int x = 0; x < g_srcImage.cols; x++ )
{
for( int c = 0; c < 3; c++ )
{
g_dstImage.at<Vec3b>(y,x)[c] = saturate_cast<uchar>( (g_nContrastValue*0.01)*( g_srcImage.at<Vec3b>(y,x)[c] ) + g_nBrightValue );
}
}
}
// 显示图像
imshow("【原始图窗口】", g_srcImage);
imshow("【效果图窗口】", g_dstImage);
}
输出效果图:
5. convertTo调整图像对比度和亮度
另外使用opencv函数convertTo也可以实现对比度和亮度的调整。使用形式如下:
void Mat::convertTo( Mat& m, int rtype, double alpha=1, double beta=0 ) const;
- m:目标矩阵。
- rtype 指定从原矩阵进行转换后的数据类型,即目标矩阵m的数据类型。
- alpha 缩放因子。默认值是1。即把原矩阵中的每一个元素都乘以alpha。
- beta 增量。默认值是0。即把原矩阵中的每一个元素都乘以alpha,再加上beta。
使用示例如下:
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;
double alpha; /**< 控制对比度 */
int beta; /**< 控制亮度 */
int main()
{
Mat image = imread("2.png",CV_LOAD_IMAGE_UNCHANGED);
if (image.empty()){
cout << "图像加载失败" << endl;
}
Mat imageConvert;
image.convertTo(imageConvert, image.type(), 1, 50);
namedWindow("转换后图像", 1);
imshow("转换后图像", imageConvert);
waitKey();
return 0;
}