【pytorch学习实战】第四篇:MNIST数据集的读取、显示以及全连接实现数字识别

本文通过PyTorch实现MNIST数据集的手写数字识别,包括数据读取、显示,使用全连接网络进行模型训练,并展示训练过程与评估结果。介绍了数据预处理、模型定义、损失函数与优化器的选择,以及模型评估和可视化技巧。
摘要由CSDN通过智能技术生成

往期相关文章列表:


1. MNIST数据集读取并显示

MNIST包含70,000张手写数字图像: 60,000张用于训练,10,000张用于测试。图像是灰度的,28x28像素的,并且居中的,以减少预处理和加快运行。

下列代码为读取、显示样本示例,它的步骤为:

  • 下面使用torchvision读取数据;
  • 然后使用DataLoader加载数据;
  • 最后使用matplotlib显示其中6张图片数据和对应的真值。
import torch
from torch import nn, optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms

data_tf = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize([0.5], [0.5])])

batch_size = 32
# 读取测试数据,train=True读取训练数据;train=False读取测试数据
train_dataset = datasets.MNIST(root='./data', train=True, transform=data_tf, download=True)
test_dataset = datasets.MNIST(root='./data', train=False, transform=data_tf)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

examples = enumerate(test_loader) #img&label
batch_idx, (imgs, labels) = next(examples) #读取数据,batch_idx从0开始

print(labels) #读取标签数据
print(labels.shape) #torch.Size([32]),因为batch_size为32

#-------------------------------数据显示--------------------------------------------
#显示6张图片
import matplotlib.pyplot as plt
fig = plt.figure()
for i in range(6):
  plt.subplot(2,3,i+1)
  plt.tight_layout()
  plt.imshow(imgs[i][0], cmap='gray', interpolation='none')#子显示
  plt.title("Ground Truth: {}".format(labels[i])) #显示title
  plt.xticks([])
  plt.yticks([])

plt.show()

输出:

tensor([7, 2, 1, 0, 4, 1, 4, 9, 5, 9, 0, 6, 9, 0, 1, 5, 9, 7, 3, 4, 9, 6, 6, 5,
        4, 0, 7, 4, 0, 1, 3, 1])
torch.Size([32])

在这里插入图片描述

2. 全连接实现MNIST数据集手写识别

在这里使用全连接实现MNIST数据集手写识别,我们这里定义的神经网络输入层为28*28,因为我们处理过的图片像素为28*28,两个隐层分别为300和100,输出层为10,因为我们识别0~9十个数字,需要分为十类。

下列示例中包含的包简介:

  • torchvision:图片的预处理。其中transforms是预处理方法,datasets用于具体实现,包括数据集的下载。
  • DataLoader:用于加载数据。

下列示例的步骤:

  1. 自定义模型:实现了3种模型,我们可以任选其中一个去调用。
  2. 数据预处理:使用datasets.MNIST下载和预处理数据。
  3. 数据加载:使用DataLoader加载数据。
  4. 定义损失函数和优化器:使用交叉熵损失和SGD优化器。
  5. 开始训练:这里注意epoch和iter的关系。epoch是整个数据集迭代的次数,而iter是一个batch迭代的次数。感兴趣的可以查看链接
  6. 模型评估:使用测试集评估loss和acc。
from torch import nn

#-------------------------------------自定义模型--------------------------------------
#定义了三个不层次的神经网络模型:简单的FC,加激活函数的FC,加激活函数和批标准化的FC。
#1. 全连接网络层
class simpleNet(nn.Module):
    """
    定义了一个简单的三层全连接神经网络,每一层都是线性的
    """
    def __init__(self, in_dim, n_hidden_1, n_hidden_2, out_dim):
        super(simpleNet, self).__init__()
        self.layer1 = nn.Linear(in_dim, n_hidden_1)
        self.layer2 = nn.Linear(n_hidden_1, n_hidden_2)
        self.layer3 = nn.Linear(n_hidden_2, out_dim)

    def forward(self, x):
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        return x
# 2. 全连接网络层 +激活层
class Activation_Net(nn.Module):
    """
    在上面的simpleNet的基础上,在每层的输出部分添加了激活函数
    """
    def __init__(self, in_dim, n_hidden_1, n_hidden_2, out_dim):
        super(Activation_Net, self).__init__()
        self.layer1 = nn.Sequential(nn.Linear(in_dim, n_hidden_1), nn.ReLU(True))
        self.layer2 = nn.Sequential(nn.Linear(n_hidden_1, n_hidden_2), nn.ReLU(True))
        self.layer3 = nn.Sequential(nn.Linear(n_hidden_2, out_dim))
        """
        这里的Sequential()函数的功能是将网络的层组合到一起。
        """

    def forward(self, x):
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        return x

# 3. 全连接网络层 + 激活层 + BN 网络层
class Batch_Net(nn.Module):
    """
    在上面的Activation_Net的基础上,增加了一个加快收敛速度的方法——批标准化
    """
    def __init__(self, in_dim, n_hidden_1, n_hidden_2, out_dim):
        super(Batch_Net, self).__init__()
        self.layer1 = nn.Sequential(nn.Linear(in_dim, n_hidden_1), nn.BatchNorm1d(n_hidden_1), nn.ReLU(True))
        self.layer2 = nn.Sequential(nn.Linear(n_hidden_1, n_hidden_2), nn.BatchNorm1d(n_hidden_2), nn.ReLU(True))
        self.layer3 = nn.Sequential(nn.Linear(n_hidden_2, out_dim))

    def forward(self, x):
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        return x

import torch
from torch import nn, optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms

#-------------------------------------超参数定义-------------------------------------
batch_size = 64 #一个batch的size
learning_rate = 0.02
num_epoches = 3 #总样本的迭代次数

#-------------------------------------数据预处理方法--------------------------------------
# transforms.ToTensor()将图片转换成PyTorch中处理的对象Tensor,并且进行标准化(数据在0~1之间)
# transforms.Normalize()做归一化。它进行了减均值,再除以标准差。两个参数分别是均值和标准差
# transforms.Compose()函数则是将各种预处理的操作组合到了一起
data_tf = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize([0.5], [0.5])])

#-------------------------------------数据集的下载器--------------------------------------
#训练和测试集预处理
train_dataset = datasets.MNIST(root='./data', train=True, transform=data_tf, download=True)
test_dataset = datasets.MNIST(root='./data', train=False, transform=data_tf)
#加载数据集
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

#-------------------------------------选择模型--------------------------------------
'''
1. 输入28*28(因为输入的图像像素为28*28)
2. 隐藏层分别为300和100
3. 输出层为10,因为识别的数字为0~9
'''
#下列3个模型可以任选其中之一
model = simpleNet(28 * 28, 300, 100, 10) 
# model = net.Activation_Net(28 * 28, 300, 100, 10)
# model = net.Batch_Net(28 * 28, 300, 100, 10)
if torch.cuda.is_available():
    model = model.cuda()

#-------------------------------------定义损失函数和优化器--------------------------------------
#交叉熵和SGD优化器
criterion = nn.CrossEntropyLoss() #softmax与交叉熵一起
optimizer = optim.SGD(model.parameters(), lr=learning_rate)

#-------------------------------------开始训练-------------------------------------
print('Start Training!')
iter = 0 #迭代次数
for epoch in range(num_epoches):
    for data in train_loader:
        img, label = data
        img = img.view(img.size(0), -1)
        if torch.cuda.is_available():
            img = img.cuda()
            label = label.cuda()
        else:
            img = img
            label = label
        out = model(img)
        loss = criterion(out, label)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        iter+=1
        #每迭代50次打印一次
        if iter%50 == 0:
            print('epoch: {}, iter:{}, loss: {:.4}'.format(epoch, iter, loss.data.item()))

#-------------------------------------模型评估-------------------------------------
print('Start eval!')
model.eval()
eval_loss = 0
eval_acc = 0
for data in test_loader:
    img, label = data
    img = img.view(img.size(0), -1)
    if torch.cuda.is_available():
        img = img.cuda()
        label = label.cuda()

    out = model(img)
    loss = criterion(out, label)
    eval_loss += loss.data.item()*label.size(0)
    _, pred = torch.max(out, 1) #onehout编码,dim=1选取最大值
    num_correct = (pred == label).sum()
    eval_acc += num_correct.item()

print('Test Loss: {:.6f}, Acc: {:.6f}'.format(eval_loss / (len(test_dataset)), eval_acc / (len(test_dataset))))

输出类似于:

Start Training!
epoch: 0, iter:50, loss: 1.679
epoch: 0, iter:100, loss: 0.9393
epoch: 0, iter:150, loss: 0.6704
epoch: 0, iter:200, loss: 0.5091
epoch: 0, iter:250, loss: 0.4796
epoch: 0, iter:300, loss: 0.4064
......
epoch: 2, iter:2600, loss: 0.3511
epoch: 2, iter:2650, loss: 0.1821
epoch: 2, iter:2700, loss: 0.2803
epoch: 2, iter:2750, loss: 0.2893
epoch: 2, iter:2800, loss: 0.4447
Start eval!
Test Loss: 0.333636, Acc: 0.901900

3. 评估数据的显示

如果想要显示评估的效果,可以结果第1和第2部分的代码,修改评估代码,如下所示:

#-------------------------------------模型评估-------------------------------------
import matplotlib.pyplot as plt

print('Start eval!')
model.eval()
eval_loss = 0
eval_acc = 0
fig = plt.figure()
#batch循环
for i, data in enumerate(test_loader):
    img, label = data
    test_img = img #只用于测试
    img = img.view(img.size(0), -1)
    if torch.cuda.is_available():
        img = img.cuda()
        label = label.cuda()
    out = model(img)
    loss = criterion(out, label)
    eval_loss += loss.data.item()*label.size(0)
    _, pred = torch.max(out, 1)#onehout编码,dim=1选取最大值
    num_correct = (pred == label).sum()
    eval_acc += num_correct.item()

    #挑选单个batch中的6个数据查看
    if i == 0:
        for j in range(6):
            plt.subplot(2,3,j+1)
            plt.tight_layout()
            plt.imshow(test_img[j][0], cmap='gray', interpolation='none')
            plt.title("Prediction: {}".format(pred[j]))
            plt.xticks([])
            plt.yticks([])

print('Test Loss: {:.6f}, Acc: {:.6f}'.format(eval_loss / (len(test_dataset)), eval_acc / (len(test_dataset))))
plt.show()

评估显示效果如下:
在这里插入图片描述
可以看到这6张图片的评估效果都是正确的。

  • 15
    点赞
  • 116
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论
好的,手写数字识别是一个非常经典的图像分类问题,MNIST数据集是一个非常常用的用于手写数字识别数据集。那么我们可以通过构建一个基于神经网络的模型来实现手写数字识别。 首先,我们需要加载MNIST数据集,并对数据进行预处理。MNIST数据集中包含了60000张训练图片和10000张测试图片,每张图片都是28*28的灰度图像。我们可以使用PyTorch中的torchvision来加载MNIST数据集: ```python import torch import torchvision import torchvision.transforms as transforms # 定义数据预处理方式 transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) # 加载训练集 trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True, num_workers=2) # 加载测试集 testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False, num_workers=2) ``` 在加载数据集时,我们使用了一个叫做transform的参数,它是用来定义数据预处理的方式的。在这里,我们使用了ToTensor()函数将图片从PIL类型转换成PyTorch中的Tensor类型,并使用了Normalize()函数对数据进行归一化处理,其中(0.1307,)和(0.3081,)是MNIST数据集中所有像素点的均值和标准差。 接下来,我们可以定义一个基于神经网络的模型。在这里,我们使用了一个包含两个隐藏层的全连接神经网络,每个隐藏层包含256个神经元,输出层包含10个神经元,分别代表数字0到9。我们使用ReLU作为激活函数,并使用交叉熵作为损失函数。 ```python import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(784, 256) self.fc2 = nn.Linear(256, 256) self.fc3 = nn.Linear(256, 10) def forward(self, x): x = x.view(-1, 784) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() ``` 最后,我们可以使用PyTorch中的优化器和损失函数对模型进行训练,并在测试集上进行测试: ```python import torch.optim as optim criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) # 训练模型 for epoch in range(10): # 训练数据集10次 running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 100 == 99: # 每100个batch输出一次loss print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100)) running_loss = 0.0 print('Finished Training') # 在测试集上测试模型的准确率 correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % ( 100 * correct / total)) ``` 通过运行上述代码,我们可以得到一个在测试集上准确率约为98%的手写数字识别模型。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

非晚非晚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值