ptrade从零开始学习量化交易第139期【ptrade集合竞价追涨停策略示例】

策略示例

Python编程

更加详细的调用方法,后续会慢慢整理。

也可找寻博主历史文章,搜索关键词使用方案,比如本文涉及策略示例!

集合竞价追涨停策略

def initialize(context):
    # 初始化此策略
    # 设置我们要操作的股票池, 这里我们只操作一支股票
    g.security = '600570.SS'
    set_universe(g.security)
    #每天9:23分运行集合竞价处理函数
    run_daily(context, aggregate_auction_func, time='9:23')  

def aggregate_auction_func(context):
    stock = g.security
    #最新价
    snapshot = get_snapshot(stock)
    price = snapshot[stock]['last_px']
    #涨停价
    up_limit = snapshot[stock]['up_px']
    #如果最新价不小于涨停价,买入
    if float(price) >= float(up_limit):
        order(g.security, 100, limit_price=up_limit)
    
def handle_data(context, data):
    pass

 

### 关于 PTrade 量化交易平台的策略源代码 PTrade 是一个基于 Python 的开源量化交易平台,提供了丰富的功能用于实现各种交易策略。对于希望获取并研究该平台上的策略源代码,GitHub 上有许多资源可以利用。 #### 获取 PTrade 策略源代码的方法 为了找到特定于 PTrade 平台的策略源代码,在 GitHub 中搜索 "ptrade strategy" 或者访问官方仓库链接是一个不错的选择。通常情况下,开发者会在项目的 README 文件中提供详细的安装指南以及示例代码说明[^1]。 下面展示了一个简单的例子,假设已经克隆了包含 PTrade 库及相关文档的 Git 存储库: ```bash git clone https://github.com/your-repo-url-here.git cd your-cloned-directory ``` 接着查看 `examples` 文件夹下的 Python 脚本文件,这些通常是用来演示如何编写新策略的最佳实践案例。例如: ```python from ptrade.strategy import BaseStrategy class MyCustomStrategy(BaseStrategy): def __init__(self): super().__init__() def on_tick(self, tick_data): # 实现具体的逻辑处理... pass if __name__ == "__main__": my_strategy = MyCustomStrategy() my_strategy.run() ``` 此段代码展示了定义一个新的自定义策略类继承自 `BaseStrategy` 类,并重写其方法以适应个人需求的方式[^2]。 值得注意的是,《量化交易之路——用Python做股票量化分析》这本书籍也包含了大量关于构建和优化量化模型的知识点,虽然不是专门针对 PTrade 编写的,但对于理解背后原理非常有帮助[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值