基于PID模糊控制的湿度控制系统matlab仿真设计

1绪论

1.1课题的背景及研究意义
  随着生活品质水平的不断提高,人们对自身生活品质提高的要求也愈来愈高。现在生活中,人类的工作、娱
乐、生活等大部分时间均处于室内,因此,人们对室内环境品质的需求也越来越高。
  空气相对湿度直接影响着室内人们的舒适与健康,较高的相对湿度,让室内的人们可以感到比实际气温更高的
室内温度。当相对干湿度以及达到90%以上时,26度会让人感觉好像是31度。因此,湿度的控制对我们日常生活至关
重要[1]。
  从目前我国自然环境上看,我国大部分地区都是属于亚温带季风气候,一年四季自然天气条件变化明显,随着
变化规律的不同,如果采用传统的PID控制,会受到多种因素影响,PID控制系统会加剧区域湿度的大幅度变化[2]。
所以,空调控制工艺多数都采用的是根据空调湿度传感器中的参数值来进行各种人工控制湿度的方法,再然后又加
上空调湿度值的变化才能满足一个阶段的湿度控制,如果空调工作人员实际工作经验不足,就可能容易会造成空调
湿度过度补偿或者补偿不足的这种情况经常出现,这就需要我们采用更加科学的智能化控制手段来实现空调的自动
控制[3]。
  而在空调十分普及的现代社会,如何才能使空调对空气中的湿度进行更精确的控制以及让它相对智能的调整湿
度是我们需要研究的方向。
  空调在工作时大体上可以分为回风段,排风段,表冷段,过滤段等等。在空调调节区域当中,空气回风会经过
过滤段,表冷段,加热段,在空气湿度较低时,通过加湿器进行加湿处理,之后再通过送风机把处理之后的空气送
入到指定区域,这样即可实现湿度的调节作用[4]。

在传统的空调控制系统中,湿度通常是控制参数,通常采用多回路PID控制方法。但是由于参数设置的复杂以及
常规的PID控制器参数系统性能较差等原因,传统的PID控制很难实现理想的控制性能,难以满足空调系统后续改进
的控制要求[5]。
  随着PLC的快速应用发展,神经网络图像控制模块和模糊控制模块也迅速的得到发展并应用起来。模糊算法是一
种新型的控制方法,其中的理论控制基础、数字控制基础以及实现方法都与目前相对传统的其他各种控制分析方法
有相对程度较大的差别[5]。这是因为传统的一些数学控制设计方法,在需要进行基于对象的数学控制时,一般都是
需要自己建立基于对象的数一种数学控制模型。但是,在实际的工程应用中,大部分的过程控制对象的动态数学处
理模型是很难建立起来的。
模糊控制是一种利用并掌握模糊数学的基本思想和理论的经典的控制方法。
  在传统控制领域中,控制系统动态模式的精确与否是影响控制优劣的关键因素,系统动态的信息越详细,才越
能达到系统精确控制的主要目的。但是,对于复杂的过程控制系统设计来说,我们经常会由于要处理的变量太多而
难以正确的给出对于过程控制系统动态的相对准确的描述,因此现在人们尝试以模糊数学的方法来处理这些相对复
杂的问题[6]。
   与传统空调系统相比,模糊控制策略比PID控制更有效,因为前者可以在部分负荷运行下调节室温,并且使冷
却盘管中的水流量显示出令人满意的振荡响应。
  模糊控制器一般分为:基本型、自组织型和智能型,这是一由低向高发展的过程。但是,无论模糊控制器有何
变化,其精髓依然蕴藏于基本模糊控制器中。深入研究,总结基本模糊控制器有重要意义。
  但是,由于模糊方法缺乏系统性,因此在空调系统中单独使用模糊控制方法的缺点是在模糊过程中不稳定和鲁
棒性差。在一些文献中,有人设计了一种基于遗传算法的PID控制器和自整定PID型模糊自适应控制器来模拟中央空
调系统的温度[7]。这两种方法也都可以满足我国中央空调专用温度控制系统的应用需求;经过调查,实验结果表
明,冷却效果较好[8]。针对非线性系统的参数/结构不确定性和输入死区的问题,设计了一种基于神经网络的自适
应控制方法,以确保系统的稳定性和鲁棒性。
  基本模糊控制器及其改进型具有简单、易操作、成本低、控制性能好、研制周期短等特点,应用潜力很大,模
糊控制器的进一步发展将与专家系统相结合,形成模糊-专家控制器。这是需要进一步研究的课题,具有广阔且诱人
的前景。
1.2国内外研究现状
  模糊系统理论源于美国,应用在日本。自1989年起,模糊控制技术在日本得到了广泛应用。近年来,我国在模
糊系统理论及其应用上也取得了可喜的成果。
  在1965年,美国加利福尼亚大学L.A. Zadeh教授在他的《FuzzySet》中第一个提出了模糊数学的概念。而在这
之后,模糊控制理论及其应用也迅速发展起来。在1974年,E.H. Mandan首先使用模糊控制语句来组成模糊控制器,
并对一个试验性的蒸汽机使用了24条" if a then b then c"形式的语言规则后就实现了模糊控制的效果。1975-
1976年,荷兰、丹麦等多个国家在大型工业生产过程中率先应用了模糊控制,并取得了令人满意的研究成果。1975
年,英国的P.J.King和E.H. Mandani将模糊控制温度系统广泛应用于各种工业生产过程中化学反应的气体温度控
制。1983年,日本国家的日立制造厂系统软件开发技术研究所的安信等十余人,使用了预测模糊控制器的方法对复
线电气化和铁路干线列车的高速运行和列车的停止时间进行了模糊控制。而日本富士电机公司、明电舍司、立石电
机公司则分别在1987年-1989年先后生产出通用模糊控制器以及一套相对应的控制软件。目前模糊控制器技术经过不
断完善,变得日趋成熟,而模糊芯片也已经初步研制成功。
   然而,模糊控制要想要保有较好的持续发展的话,就必须要建立具有较完善的模糊控制管理规则。对于某些复
杂的系统工业控制过程,又是难以充分总结并得出比较完整的经验,并且认为当一个对象的系统动态特性发生变
化,又或者对象受到随机条件的干扰的影响时,模糊控制器的效果并不十分理想。为了促进模糊控制的深入发展,
至今为止,国际上召开了五届IFSA全世界学术大会,众多学者也进行了卓有成效的工作,对常规模糊控制进行了改
进[9]。
1.3本文研究内容
  基于以上国内外专家学者对于空调湿度控制的仿真系统模型及目前模糊控制的研究现状,本课题研究计划使用
MATLAB软件中的Simulink工具箱来建立空调加湿器系统的湿度控制系统仿真模型并对模糊控制方法和目前相对传统
的PID控制方法的湿度控制策略的湿度响应效果进行了分析和比较,来验证将模糊控制方法应用于湿度控制系统设计
dang中的正确性和可行性。本课题研究的理论内容将大致包括以下几个章节:

(1)第2章对于湿度控制系统总体进行功能上的分析,构建湿度控制系统总体结构并对PID控制器和模糊控制器
的控制方法进行介绍。
  (2)第3章研究了系统总体设计的实现过程,其中包括系统环境参数的确定,PID控制器和模糊控制仿真环境的
搭建以及PID控制和模糊控制下湿度响应模型的构建。
  (3)第4章对系统仿真进行参数的调整并对仿真结果即PID控制和模糊控制下系统湿度响应曲线及输入变化曲线
进行分析。
(4)第5章对整体研究进行分析得出结论。
(5)第6章对此次研究遇到的问题以及解决方法进行说明并对之后的研究方向和提升空间进行展望。
2系统需求分析
2.1功能分析
系统总体需求是能准确的调整室内空气中的相对湿度以使人体感觉更加舒适。
  本文设计目标在于对比传统PID控制器和模糊控制器对于调整室内相对湿度的优劣。通过仿真软件的运行结果可
以达到这一目的。
软件方面的需求是能够准确画图以及分别对传统PID控制和模糊控制器的湿度动态响应情况进行仿真。
  因为没有硬件方面的需求,因此本次实验采用MATALB2010b进行仿真以及环境的搭建。首先它具有高效且科学的
数值计算及符号计算的功能,能使软件的使用用户易于从传统中繁杂的数学公式运算以及分析中轻松的解放出来,
其次是它还具有完备的图形处理功能,能实现用户计算出的结果和编程的自动可视化,然后它友好的用户使用界面
以及接近数学表达式的自然化编程语言,都使学者易于学习和掌握,最后功能丰富的应用工具箱(如信号处理工具
箱、通信管理工具箱等) ,为广大用户及企业提供了大量方便实用的数据及信息处理工具。
2.2软件分析
因为本实验缺乏硬件环境,因此选择计算机仿真软件来实现相关内容。
  仿真是以相似性原理、控制论、信息电子技术及其他相关科学研究领域中的有关科学知识作为研究基础,以使
用计算机科学技术和各种各类专用的物理实验设备为研究的工具,借助系统模型对于真实的系统条件进行科学试验
分析研究的一门新型综合性的科学技术。仿真的基本设计思想一般是是利用一些物理的或者是数学的实验模型来进
行类比或者模仿其他现实的研究过程以寻求对真实实验研究过程的正确认识。现在尤指一种利用计算机科学技术去
科学研究数学化模型行为的常见的研究方法。计算机仿真过程的基本研究内容主要包括仿真系统、数字模型、算
法、计算机应用程序结构设计与过程仿真以及结果显示、分析与验证等各个环节。而按照系统实现仿真方式的不同
又可以将系统中的仿真技术主要分为如下三类:
  (1)实物仿真:又称物理仿真。它主要是泛指研制某些实体模型并且能够使之重现原系统设计当中的各种研究状
态。科学界早期的仿真中大多属于这一类。它的主要优点是直观且十分形象,并且至今为止仍然在研究中广泛应
用。
  (2)数学仿真:所谓数学仿真就是用一种数学语言形式去正确表述一个系统并通过编制程序来在一台计算机上实
现对实际中的系统活动进行仿真来分析和研究的过程。这种新的数学表述形式就是一种数学模型。数学仿真把对一
个研究对象的系统结构特征或者系统输入输出之间的关系抽象为一种新的数学模型描述(微分方程、状态方程等方程
也可以分为解析模型、统计模型)来进行科学研究,它具有很大的灵活性,它不仅可以方便地改变系统结构和系统相
关参数;而且演变速度快,它可以在很短的一段时间内完成实际上系统会需要运行很长时间的一个动态演变的过程;
而且它的精确度比较高,可以根据实际的科学研究需要来随时改变数字仿真的精度;它的重复性也很好,可以很容易
地再现当时的数字系统仿真的过程。然而这个数学仿真必然也有它的一些局限性。对于某些复杂系统的运行而言可
能很难用各种各样的数学模型来相对精准的表达或者难以完全建立它的精确计算模型或者由于数学计算模型过于复
杂而目前却无法精确求解或者数字计算的数据量过于庞大而目前无法利用当前计算机现有的计算能能力资源对其进
行数学的仿真。
  (3)半实物仿真:它又被称为是数学仿真或者是混合仿真。在科学研究领域当中,为了提高科学研究仿真的可信
度或者为了针对一些难以建模的实体在系统研究中研究者们往往把需要使用的数学模型、物理模型和实体互相结合
起来用以组成一个相对比较复杂的仿真系统,而这种在仿真环节中存在实体的相对比较复杂的仿真方式就被称之为
半实物仿真或者是半物理仿真 [10]。
  就目前来看,早期的计算机科学研究的仿真技术的发展大致可以算为经过了以下这几个发展阶段:20世纪40年代
的早期模拟计算机科学数字仿真;50年代初期出现的数字仿真;60年代早期数字仿真编程语言的不断出现等等。80年

代逐渐出现的面向对象的软件仿真技术为系统科学研究仿真的学习方法注入了全新的活力。而我国早在50年代就已
经开始深入研究仿真技术了,当时我国研究仿真技术的目的主要是应用于国防领域,以模拟计算机的仿真为主。70
年代初期开始应用数字计算机进行仿真。随着数字计算机的普及。经二十年以来,国际、国内出现了许多专门用于
计算机数字仿真的仿真语言与工具如CSMP、MATLAB/Simulink、SIMNON、Matrix/systemBuild等。
  仿真给予我们科学研究系统带来了巨大方便,但在我们进行系统结构程序设计时,尤其是在进行计算矩阵的运
算或者在画图时利用语言FORTRAN、C语言来编程进行调试时工作效率相对较低,很不方便。1984年MATLAB的正式推
出为全世界研究工作者们打开了一个全新的局面。MATLAB是美国MATHWORKS公司团队开发的一个功能强大的数学的研
究技术的软件包。它集海量数值数据的分析、矩阵函数运算、图形的绘制等多种功能于一身,为我们提供了一个结
合了高性能的海量数值数据计算分析和图形信息显示的科学和工程系统计算软件应用环境。与此同时,它还特别包
含有一系列称为工具箱的涉及许多不同领域和环境的十分丰富应用软件功能模块。比如信号处理、图象处理、控制
器和系统数据分析、神经网络、优化、统计学和符号数学等等。因而MATLAB已经发展成为目前国际上最流行的工程
科学与技术工程应用计算机的高级软件仿真研究工具,现在的MATLAB已经不仅仅只是一个“矩阵实验室”,它已经
发展成为了一种非常具有广泛应用前景的、全新的工程计算机软件高级编程应用语言,有的人把它称之为“第四
代”计算机编程语言,它在国内外的高校和科学研究部门实践过程中也扮演着十分重要的角色。MATLAB语言的功能
也随着发展越来越强大,不断的探索着适应科学研究领域新的发展要求提出并且提出对于新问题的解决办法。可以
由此预见在信息科学运算与系统仿真两个领域当中,MATLAB语言将来会长期保持其独一无二的重要地位。在1990年
MATHWORKS美国软件开发公司又新推出一套了MATLAB/simulink仿真工具箱,此仿真工具箱在数字系统设计和仿真应
用中很快地就得到了重大发展。
  Simulink它是一个用来对动态系统的科学研究来进行建模、仿真和分析的软件包,还同时是MATLAB软件的一个
软件仿真模块,而且它也是一个包含建模、分析和仿真等多种多样的物理和数学的应用模块的软件环境。它可以在
图形用户界面为软件使用用户提供一个用以科学研究动态系统的结构方框图模型。Simulink包含了一个海量的结构
方块图的图库。这样的话用户就可以既快又方便地对系统建模、仿真而不必写任何程序代码。它支持连续、离散及
两者混合的线性和非线性系统也支持具有多种采样速率的多速率系统。主要有以下几个特点:
  1.具有仿真与连接功能。可以利用鼠标器在模型窗口上画出所需的控制系统模型然后利用该软件提供的功能来
对系统直接进行仿真,使得一个很复杂系统的输入变的相当容易。
  2.用方框图进行建模。采用此结构画模型就象用笔和纸来画一样容易,其与普通的利用微分方程或差分方程建
模相比具有直观、方便、灵活等优点。
  3.建模具有递阶结构。用户在建模时可以从上到下或从下到上的结构建立模型,建完后可以从最高级开始观看
模型然后用鼠标双击其中的子系统模块来查看下一级的内容,从而用户可以了解整个模型的细节。
  4.仿真方便。有两种仿真方式:第一种是通过simulation的菜单方式,直接点击simulation,然后再点击start
即可,非常方便、快捷。第二种是在MATLAB命令窗口键入命令进行仿真,同时用户可以通过屏幕观察仿真结果。另
外,若在仿真系统中采用一些画图模块如Scope模块、GraphScope模块等,那么直接点击模块就可以观看仿真结果
了。
  5.具有海量的子系统模块库。Simulink工具箱包含了SinkS(输出的方式)、Source(输入源)、Linear(线性环
节)、ConnectionS(连接与接口)、Extra(其他环节)等许多的子模型库,而且每个模型库又包含许多不同的功能块,
与此同时用户也可以自己定制或创建他们所需要的模块。
  然而迄今为止,在simulink的模型库中我们仍然没有见到任何一个关于空调环节的模型库。所以就使得对于空
调的工程师和相关技术人员来说,系统仿真的研究和设计工作的开展非常困难。而且现有的一些研究成果也并未在
MATLAB/simulink中正式公布,因此我们有必要在MATLAB/simulink中不断的丰富和完善空调各个环节的模型,才能
够促进并推广其计算机仿真在空调设备和工程技术领域中的应用。

3系统设计

3.1 总体结构
  此湿度控制系统主要是一种利用传感器来测量室内相对湿度的变化并通过风量控制器来对送风量进行相对应的
控制来实现对室内湿度调节。它包括送风段和回风段,在空调调节过程中,空气回风会经过过滤段,表冷段和加热
段。在空气湿度较低时,通过加湿器进行加湿处理;在空气湿度较高时,则通过加热处理来减少空气中的湿度,之
后再通过送风机把处理过的空气输送到指定区域,这样即可达到湿度的调节作用。湿度控制系统方框图如图3.1.1:

在这里插入图片描述

图3.1.1 湿度控制系统方框图
3.2 PID控制介绍
  经典控制理论应用于实际控制系统中的一个典型例子就是PID控制器。在早期的控制系统中,PID控制方式也是
唯一一种的自动控制的方式。而伴随着现代计算机科学技术的进步与发展,现代控制理论已经在实用性研究方面获
得了巨大的进展,解决了许多古老的、经典的控制理论无法解决的问题。这一现象导致许多人开始认为,新的理论
和技术将会超越并取代PID控制。但后来的研究和发展说明,PID控制并没有任何让位。目前,PID控制仍然被认为是
在我国工业控制运行中应用得最为广泛的控制方法。其主要原因如下:(1)其特点是结构简单,鲁棒性和环境适应
能力较强;(2)它的调节和整定很少取决于该数字系统的具体模型;(3)各种高级控制方法和策略在实际应用上
还存在些许差异;(4)大多数的控制对象只要使用常规的PID控制策略就可以充分满足实际的需要;(5)相对高级
的控制技术难以被企业中负责控制策略的相关技术人员所掌握。
PID控制分为比例环节、积分环节以及微分环节这三个环节。
(1)比例控制:输出与输入偏差形成一定的比例,即直接将误差信号进行放大
或者缩小。比例控制的传递函数为:
G(s)=Kp (1)
  随着KP值的增大,系统响应速度加快,但系统的超调也随着增加,调节时间也随着增长。当KP增大到一定值
后,闭环系统将趋于不稳定。
  比例控制它本身虽然具有抗外界干扰能力强、控制很及时、过渡持续时间比较短等诸多重要优点,但是由于控
制系统本身存在着相对稳态误差,增大了系统比例系数可以大大提高系统的相对开环增益,减小了系统本身的稳态
误差,从而大大提高系统运行时的控制精准度,但这种情况会严重影响系统运行的相对稳定性,甚至还有可能会造
成闭环控制系统的不稳定,因此,在系统的校正和系统的设计中,比例控制通常来说不能单独使用。
(2)积分控制:输出与输入之间偏差的积分形成一定的比例,即与系统误差的
积累形成一定的比例。积分控制(与比例控制同时使用)的传递函数的公式为:
G(s)=Kp(1+1/Ti1/s) (2)
  在系统加入积分控制之后,消除了整个系统的稳态误差,但是随着TI值的逐渐增大,系统运行达到稳态的一个
过渡时间也会随之变得相对延长。
  积分项的计算准确率和整个计算时段的误差取决于时间的积分,随着计算误差的时间的不断推移,积分项就可
能会逐渐变得更大。这样的话,即使系统的输入和输出误差很小,积分项也极有可能会随着系统运算时间的增加而
逐渐增加,与此同时它也推动着控制器的输出不断增大,使得系统的稳态误差有所下降,直到稳态误差下降为零,
但是却可能会直接导致系统运行的稳定性有所下降,过渡期内的时间也可能会随之变得更长。
  (3)微分控制:将输出与输入之间可能产生的精度偏差的变化经过一定的微分处理并使之成为比例,即与系统
精度偏差的变化速度形成一定的比例。微分控制(与其他比例控制同时也被使用)的传递函数的定义公式为:
G(s)=Kp(1+TdS) (3)
  随着系统传递函数内Td数值的逐步增大,系统在运行时所产生的超调量也逐渐得到下降,系统的动态超调性能
特征得到了很大改善。
  自动控制相关系统经常在克服误差的实时参数调节过程中,很多时候有可能就会出现系统振荡甚至于不稳定,

而原因很可能是控制系统中仍然存在一些具有较大惯性或者总是有一些滞后的驱动组件,这些组件会使控制系统具
有抑制误差的作用,其变化总是在相互的比较中落后于误差的变化,在控制器质中仅引入比例项是不够的,比例项
的主要功能和作用仅仅是放大误差的幅值,而微分项却能够预测到误差将要变化的趋势,这样一个具有比例+微分的
系统控制器,就不仅可以通过提前设计让抑制误差的控制作用数值等于零,甚至可以是一个负的数值,从而也就可
以有效避免系统被控量的严重超调,改善系统的动态特性。
  微分控制是反映系统误差变化的程度和速率,只有这样,当误差随时间变化时,微分控制才能够对系统产生一
定的作用,而对没有发生变化或变化发生比较缓慢的对象则不起作用。除此之外,微分控制相对于纯滞后环节来
说,并不能够起到提高控制性能和品质的作用,反而还具备了放大高频噪声信号的不足。
PID控制的系统总体传递函数为:
G(s)=Kp(1+1/T1/s+TdS) (4)
  PID控制是一种通过控制积分的作用来有效减小和消除控制系统过程中的误差,而采用微分控制这种控制方式不
仅可以缩小系统运行时的超调量、还可以加快系统反应的速度,这种控制方式是综合了PI控制和PD控制两种控制方
法的长处并且还去除了这两种控制方法的短处。但是通常情况下由于实际所应用的控制对象一般都具有非线性、时
变不确定性、强干扰等不同的特性,因此在应用一些常规化的PID控制器时往往难以达到我们理想的控制效果;而且
在工厂生产现场时,也会由于各种各样的参数整定方法过于繁杂,而导致这些常规化的PID控制器参数经常出现整定
不良、性能欠佳的情况。这些因素直接导致了PID控制技术在复杂的系统环境和其他符合工业高性能设计要求的系统
中的应用受到了限制。
传统PID控制器系统框架如图3.2.1:在这里插入图片描述

图3.2.1 PID控制器系统框架图
3.3 模糊控制方法介绍
  模糊控制是利用模糊数学的基本思想和理论的控制方法。在传统的控制领域里,控制系统动态模式的精确与否
一直都是影响控制性能和效果优劣的最重要因素。系统动态的数据信息越是详细,则越能达到预期对于控制对象精
确控制的目的。
  然而,对于相对复杂的数据系统,经常会由于系统内的变量太多,往往很难正确的描述和统计分析系统的各个
主要特征和基本动态,于是一些专业的工程师便开始利用各种科学技术和研究方法及手段来逐步优化和不断简化系
统的动态特征,以达成控制的目的,但却不尽理想。换言之,传统的控制理论对于明确系统有强而有力的控制能
力,但对于过于复杂或难以精确描述的系统,则显得无能为力了。因此便尝试着以模糊数学来处理这些控制问题。
  一般过程控制系统的基本功能架构中通常需要五个主要部分来组成,它们分别是:自定义变量、数据模糊化、知
识库、逻辑过程判断及数据反模糊化,在接下来的文章中将对各个组成部分逐一进行一些简要的说明:
  1.定义模糊控制的输入变量:也就是决定一个控制程序被观察时的状况及考虑控制的动作,我们通常可以发现
在一般控制问题上,输入变量会有系统输出误差E与系统输出误差变化率EC,而模糊控制方法还将控制变量作为控制
系统下一个状态的输入U。其中E、EC、U就一起被称为模糊变量。
  2.数据模糊化:主要内容是将系统的输入值以一个相对适当的比例转换后得到一个论域的数值,然后就利用这
种口语化变量来准确的描述测量物理量的过程,根据一个相对比较适合的语言值(linguistic value)就可以求出
与该值相对应的一个隶属度,这样的一个口语化变量就被我们称之为是模糊子集合(fuzzy subsets)。
  3.知识库:知识库里面主要包括了数据库(data base)与规则库(rule base)这两大组成部分,其中这些数
据库主要是为了向需要的用户提供一些处理模糊数据的相关定义和概念;而作为另一组成部分的规则库则是通过一
群语言控制的规则来描述系统的控制目标和相关策略。
  4.逻辑性判断:此判断就是模仿人类在下判断时的一种相对模糊的概念,并且运用了模糊化逻辑和模糊推论方

法去进行一个推论,然后因此得到一个模糊控制的讯号。该部分正是模糊控制技术的重中之重和精髓所在。
  5.数据解模糊化:将系统通过模糊推论方法运算所得出的模糊控制值转换为一个相对明确的控制讯号,作为这个
系统的主要输入值。
模糊控制器系统框架如图3.3.1:在这里插入图片描述

图3.3.1 模糊控制器系统框架图

4系统实现

4.1系统环境参数
  本研究考虑一个室内建筑环境,假设如下: (1)室内建筑被认为是一个闭环系统。(2)室内的空气压力维持不
变。(3)室内空气扩散良好,温度以及季节稳定在夏天25度。(4)湿度对室温的影响不明显。
  在室温达到25度时,室内的相对湿度在40%~50%时,人体体感感觉是最为舒适的。而室内相对湿度在无外界干扰
下变化不大,因此设定相对湿度范围为30%~60%。

由此建立一个二阶负反馈控制系统,并确立传递函数为:
(4)
   在MATLAB软件中的Simulink工具箱中找到连续PID模块来设置相关参数并搭建PID控制湿度响应模型,如图
4.2.1及图4.2.2所示:
图4.2.1 PID模块相关参数设置

在这里插入图片描述

图4.2.2 PID控制湿度响应模型图
4.3模糊控制器设计
模糊控制系统结构图和仿真模型如图4.3.1所示:在这里插入图片描述

图4.3.1 模糊控制系统结构图
  此次的模糊控制器主要设计有两个输入信号和一个输出信号,它们分别是:(1)第一个输入变量信号,记为e,
它是指湿度设定值和实际室内湿度的一个偏差,e=s-y。(2)第二个输入变量信号,记为de/dt,它指的是偏差的一
个变化率。(3)输出变量信号,记为u,代表的是空调加湿器的控制电压,单位为V,对应输出功率的高低。
  输入变量信号E的取值为:{负大,负小,零,正小,正大},表示符号{NB,NS,ZE,PS,PB}。隶属度函数选
择三角形

在实际中对一些模糊控制器的应用效果进行实时控制时,这时出现的一定的偏差e和偏差的变化率ec就会对应的
有某一些IF-THEN控制规则产生效果,而这些生效的模糊控制规则就会产生一个整体性的综合数据推断结论,并通过
一个解模糊的运算过程将其转换成为一个确定的输出值,从而给定了空调加湿器的控制电压,对应于空调电机输出
功率的大小。在这里插入图片描述

对控制表数据进行测试生成立体图,如图4.3.5所示。

在这里插入图片描述

图4.3.5 模糊控制规则三维图
模糊控制规则设定完成后导入进模糊控制模块并建立模糊控制湿度响应模型,如图4.3.6:
图4.3.6 模糊控制湿度响应模型

5系统调试及结果

在本次研究中利用 MATLAB软件中的Simulink工具箱来构建空调系统的仿真模拟模型。采用模糊控制技术方法和
目前相对比较传统的PID控制方法对于湿度控制策略进行了一番比较,验证了模糊控制策略在湿度控制系统应用的正
确性和可行性。

在这里插入图片描述

图5.2 PID控制输入变化曲线
模糊控制湿度响应模型为了使仿真图形更易于观察,将传递函数调整为:
(5)
模糊控制湿度响应曲线和输入变化曲线如图5.3和5.4所示:
在这里插入图片描述

图5.3 模糊控制湿度控制系统阶跃响应曲线

从湿度控制系统的仿真曲线图看,其中PID控制器的湿度系统响应曲线有一些超调,而且过渡时间相对比较长,
而模糊控制器的系统响应曲线却比较平稳,没有出现较高的超调。
  从输入变化曲线来看,PID控制器的输入变化曲线变化相对较大,波动较大,而模糊控制器的输入变化曲线变化
比较平稳,波动较小。
结 论
  使用以上解决方案设计出来的系统模糊控制器,可以根据偏差值和偏差变化率值的大小,同时再利用系统设定
的模糊控制规则来确定空调电机的输出电压,从而取得了相对良好的一个控制效果,能够实时地对湿度进行监控,
并且这个模糊控制器还具有以下几个特点:(1)和普通PID控制器的控制效果相比较的话,采用模糊控制器后系统
湿度响应曲线的超调明显有所减小,而且响应曲线变得更加的平稳。(2)模糊控制系统在运行时具有良好的响应速
度、稳定性又具有数据的良好精确性,且具有相对较强的鲁棒性。所以我们可以得出的结论就是模糊控制器不仅仅
能够可以克服一些普通PID控制器所存在的技术局限性,而且在中央空调自动控制中也同时具有很高的技术应用价
值。
  良好的室内舒适环境有助于维持人类自我的身心健康、降低室内环境的能源消耗,同时也能够提高人们日常生
活的生活质量。该湿度控制系统对于湿度和温差等指标的改变进行相对应的控制,随着对于人体体感和需求的变化
来自动改变对于湿度的控制,达到了实时控制是室内湿度的效果,改变了传统非实时、仅对室内温度进行控制的单
一且乏味的控制;该控制系统以保证人体舒适为主要前提,通过自我调节系统的各个参数,来使系统的效率提高;
本文所提出的模糊控制策略应用于室内湿度控制系统,实现了对于系统中多变量的模糊控制,避免了其他原有算法
的繁杂过程,使得系统的运算更为精简。除此之外,这种方法也可以被应用在别的不能进行多个输出的解耦系统
中,具有十分广泛的应用前景。
  在本次研究过程中我学习到了很多,获得了与以往做课程设计不同的体验,收益颇多。在以往的课程设计当
中,我们多是按照具体的要求来进行设计,并且有具体的流程,所以多是照本宣科,是一个从1到2复制粘贴的过
程。而做毕业设计时,由于任务书的要求很宽泛反而会感觉有些不知所措,在指导老师的指点下才明白大概的步
骤。但它却依然是一个从0到1的过程,从自己在网上找与高校毕业论文设计题目相关的外文学术文献进行翻译,再
到对环境参数的确定,对软件使用以及控制方法的学习,再到最后参数的调整,都让我看到毕业设计不同与以往课
程设计的地方,也让我理解到科研的辛苦,不由得对我国那些有杰出成果的学者肃然起敬,是我们当代年轻人需要
学习和看齐的榜样。
  在研究方面我也明白了模糊控制的相关理念,从一开始的摸不着头脑到最后学会并会简单使用,让我意识到学
习的魅力,也让我愈加了解模糊控制的历史及其发展历程。
  在本次研究中的不足是我只尝试了简单的模糊控制器,而更近一步的研究方向则是将模糊控制与其他控制方法
相结合,以弥补模糊控制因为缺乏系统性而在系统中单独使用会在模糊过程中不稳定和鲁棒性差的不足。在一些文
献中,有人设计了一种基于遗传算法的PID控制器和自整定PID型模糊自适应控制器来模拟中央空调系统的温度
[16]。这两种方法都可以满足中央空调温度控制系统的需求,而且实验结果表明冷却效果较好[17]。而且还有人针
对一些非线性系统的参数/结构不确定性和输入死区的问题,设计了一种基于神经网络的自适应控制研究方法,以确
保系统的稳定性和鲁棒性。
模糊控制在非线性场景下的应用潜力很大,拥有广阔且诱人的发展前景。

致 谢

大学四年的生活逐步迈进了结束,心中仍有许多的感慨。从懵懂无知到进入校园学习,再到步入社会学习与工
作,不过弹指一挥间。转眼间就到毕业的阶段了,而好多东西也未曾记录与留念,借此机会,我想对大学四年来对

我有过帮助的老师,同学,朋友由衷的道谢。
  在本次的毕业论文设计中,十分感谢我的老师和学校,给了我许多学习的机会,而且在学习中,老师从选题指
导、论文框架到细节修改,都给予了我细致的指导,提出了很多宝贵的意见与推荐,老师以其严谨求实的治学态
度、高度的敬业精神、兢兢业业、孜孜不倦且扎实的工作作风和大胆开拓创新的敬业精神对我产生了重要且深远影
响。她渊博的专业知识、开阔的知识眼界和敏锐的逻辑思考能力给予我深刻的启迪。本次学术论文主要是在学校老
师们的精心指导和学校的大力支持下才能够进行编辑和完成的。
  再次感谢所有授业与我、学习路上与我相伴的各位老师,没有这些年来对于专业知识的积累和沉淀,我也不会
没有这么的大的动力和信心去完成这篇论文。感恩之余,诚恳地请求各位对我的论文多加批评指正,使我能够及时
努力的完善论文中可能存在的不足之处。除此之外还要特别感谢我的家人,长久以来是他们在背后对我默默的关怀
和支持给予了我巨大的信心和动力,在让我能够顺利完成学业的同时,也更多的使我清晰地认识到了将来人生事业
的发展方向和前景,这温馨的亲情和爱护我将终身不忘!
  谨以此致谢。最后,我还要向百忙之中却依然抽出课余时间对本毕业设计论文进行审阅和检查的各位老师表示
由衷的感谢和祝福。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值