基于ResNet的花卉分类识别系统

项目简介

本项目构建了一个基础的花卉分类识别系统,使用ResNet作为主干网络,旨在能够有效地区分10种不同类别的花卉。该项目不仅包括了模型训练和测试的过程,还提供了线上部署的解决方案,以确保其可以在实际应用中被广泛使用。项目简介

本项目为一个基础的花卉分类识别系统,采用 ResNet作为主干网络,包含模型的训练、测试以及线上部署(提供容器化部署)。
在这里插入图片描述

  • List item

  • 基于 PyTorch 框架进行模型的训练及测试。

  • 模型采用 ONNX 格式部署,采用 ONNX Runtime 进行推理。

    在这里插入图片描述

  • 基于 Flask 框架实现 Web 接口。

  • 使用 Docker 进行容器化部署。

  • 训练数据集来自融合了多个数据集并进行了数据清洗,基于预训练模型进行训练,在当前数据集下准确率超过 98%

技术栈
  • 深度学习框架:PyTorch
  • 推理引擎:ONNX Runtime
  • Web接口实现:Flask框架
  • 容器化部署:Docker
数据集与预处理

训练数据集来源,包含了多个公开可用的数据集。为了提高模型的质量和泛化能力,我们对原始数据进行了清洗,移除了不清晰或不符合标准的图片,并对图像进行了标准化处理。此外,为了增加数据的多样性,我们还实施了一系列的数据增强技术,例如随机裁剪、水平翻转、颜色抖动等。这些措施有助于模型在面对各种实际情况时保持较高的准确率。

模型选择与训练

基于ResNet架构,我们的模型首先利用ImageNet上的预训练权重进行了初始化,然后针对花卉分类任务进行了微调。这不仅加快了训练速度,也提高了模型性能。在训练过程中,我们设置了多种超参数,如学习率、批大小、迭代次数等,并通过交叉验证来找到最佳配置。最终,在当前数据集下,模型达到了超过98%的准确率。
在这里插入图片描述

使用说明

环境搭建

要运行此项目,您需要安装一系列依赖包。对于推理部署环境,可以通过pip安装以下依赖:

# 推理部署环境依赖
opencv-python~=4.10.0.84
numpy~=1.23.4
Flask~=3.0.3
PyYAML~=6.0
onnxruntime~=1.14.1

如果您计划进行模型训练,则还需要额外安装一些库:

# 训练环境依赖
torch~=2.4.0
torchvision~=0.19.0
onnx~=1.16.2

请注意,使用pip安装opencv-python可能会导致某些依赖缺失的问题;建议使用系统的包管理器(如apt-get或yum)来进行安装。

启动Web服务

项目的默认配置文件位于configs/deploy.yaml,其中定义了诸如推理精度、会话提供者以及花卉名称列表等关键设置。将训练好的模型权重文件放置于inferences/models/目录后,可以通过以下命令启动Web服务:

flask --app inferences.server run --host="0.0.0.0" --port=9500

该Web服务提供了一个简单的API接口,用于接收待识别的花卉图像并返回预测结果。请求方式为POST,携带表单数据格式的图像文件。服务器将以JSON格式响应,包含预测的花卉名称及其置信度得分。

模型训练与评估

如果用户想要使用自己的数据集来训练模型,首先需要准备数据集并调整好模型输出格式。接下来,根据需求修改configs/train.yaml中的参数,比如设备类型、迭代次数、学习率等,之后运行train.py即可开始训练过程。

训练完成后,可以运行eval.py脚本来评估模型在测试集上的表现。默认情况下,评估使用的配置文件为configs/eval.yaml,其中指定了待评估模型路径、批大小等相关信息。

模型推理部署

为了便于部署,我们需要将训练好的PyTorch模型转换成ONNX格式。这一过程相对简单,只需按照官方文档指导操作即可。对于容器化部署,可以利用提供的Dockerfile文件构建镜像,并创建一个容器来运行Web服务:

# 构建镜像
cd FlowerClassify
docker build -t flowerclassify:1.3.0 -f docker/Dockerfile .

# 创建容器并运行
docker run --rm -p 9500:9500 --name flowerclassify flowerclassify:1.3.0

上述步骤仅为示例,具体命令可能因版本更新而有所变化,请参考最新的Docker文档获取最准确的信息。

总结

综上所述,本项目提供了一套完整的解决方案,从模型训练到部署上线,涵盖了所有必要的环节。通过采用先进的深度学习技术和高效的部署策略,我们实现了对10种花卉的有效分类识别。未来的工作方向可以考虑进一步优化模型结构、探索更多的数据增强方法,以及尝试其他类型的神经网络,以期达到更高的识别精度和更广泛的应用范围。同时,随着更多高质量数据的积累和技术的发展,相信这个花卉分类识别系统将会变得越来越强大。

基于ResNet18的花卉识别步骤如下: 1. 数据集准备:收集花卉图片数据集,并将其分为训练集、验证集和测试集。 2. 数据预处理:对图片进行预处理,包括缩放、裁剪、旋转、翻转等操作,以增加数据集的多样性。 3. 模型训练:使用ResNet18模型对数据集进行训练,可以使用PyTorch等深度学习框架进行实现。在训练过程中,可以使用交叉熵损失函数和随机梯度下降等优化算法。 4. 模型评估:使用验证集对训练好的模型进行评估,计算模型准确率、精确率、召回率等指标。 5. 模型测试:使用测试集对训练好的模型进行测试,评估模型的泛化能力。 6. 模型优化:根据模型评估结果,对模型进行优化,可以尝试调整模型结构、超参数等。 以下是一个基于ResNet18的花卉识别的PyTorch代码示例: ```python import torch import torch.nn as nn import torchvision.models as models # 加载ResNet18模型 resnet18 = models.resnet18(pretrained=True) # 冻结模型参数 for param in resnet18.parameters(): param.requires_grad = False # 替换最后一层全连接层 num_ftrs = resnet18.fc.in_features resnet18.fc = nn.Linear(num_ftrs, num_classes) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(resnet18.fc.parameters(), lr=0.001, momentum=0.9) # 训练模型 for epoch in range(num_epochs): for inputs, labels in dataloaders['train']: inputs = inputs.to(device) labels = labels.to(device) optimizer.zero_grad() outputs = resnet18(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # 评估模型 correct = 0 total = 0 with torch.no_grad(): for inputs, labels in dataloaders['test']: inputs = inputs.to(device) labels = labels.to(device) outputs = resnet18(inputs) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() accuracy = 100 * correct / total print('Accuracy of the network on the test images: %d %%' % accuracy) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值