基于深度学习的行人检测及测距方法设计与实现(代码+数据集+模型+ui界面)

📹 基于YOLOv8的CCTV监控距离测算系统

项目概述

本项目采用YOLOv8分割模型实时估算监控摄像头与目标物体(人员及显示器)之间的距离。
在这里插入图片描述

🌟 核心功能

  • 目标检测与分割:利用YOLOv8在监控画面中检测并分割人员和显示器
  • 距离测算:通过物体感知宽度与实际宽度的比例关系计算目标物距
  • 实时处理:对监控视频流进行实时分析,持续输出距离数据
  • 可视化界面:在视频画面中显示检测框及测算距离
    在这里插入图片描述

🛠️ 系统要求

  • Python 3.8或更高版本
  • ultralytics库
  • opencv-python库
  • numpy库

🔧 安装指南

#=

2. 安装依赖项

pip install -r requirements.txt

⚙️ 配置说明

监控源设置

  1. 在项目目录下创建config.py配置文件
  2. 添加监控视频流地址:
CCTV_URL = "您的监控视频流地址"

焦距校准(关键步骤)

  1. 运行distance_calculator.py中的calculate_focal_length方法
  2. 将已知尺寸的物体放置于已知距离处
  3. 测量物体在画面中的像素宽度
  4. 使用实测数据更新校准方法:
def calculate_focal_length():
    known_distance = 2.0  # 单位:米
    known_width = 0.5     # 单位:米
    perceived_width = 250 # 单位:像素
    return (perceived_width * known_distance) / known_width

在这里插入图片描述

🚀 使用说明

  1. 启动应用程序:
python yolo_distance.py
  1. 系统将显示带检测框和距离数据的实时画面
  2. Q键退出程序

📝 重要注意事项

  1. 请确认YOLOv8模型中"Person"和"Monitor"的类别ID设置正确
  2. 根据实际情况调整distance_calculator.py中的known_width参数
  3. 精确的焦距校准是保证测算精度的关键
  4. 实际性能受硬件配置和场景复杂度影响

🖥️ 实时分析界面示例

[监控画面]
┌──────────────────────┐
│   ████████████████   │
│   █ 人员1.8m ████   │
│   ████████████████   │
│                      │
│   ████████████████   │
│   █ 显示器3.2m ██   │
│   ████████████████   │
└──────────────────────┘

⚠️ 精度优化建议

  1. 定期进行焦距重新校准(建议每月一次)
  2. 确保监控摄像头保持固定位置
  3. 对于关键区域,建议使用4K分辨率摄像头
  4. 复杂光照环境下建议开启HDR模式
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值