📹 基于YOLOv8的CCTV监控距离测算系统
项目概述
本项目采用YOLOv8分割模型实时估算监控摄像头与目标物体(人员及显示器)之间的距离。
🌟 核心功能
- 目标检测与分割:利用YOLOv8在监控画面中检测并分割人员和显示器
- 距离测算:通过物体感知宽度与实际宽度的比例关系计算目标物距
- 实时处理:对监控视频流进行实时分析,持续输出距离数据
- 可视化界面:在视频画面中显示检测框及测算距离
🛠️ 系统要求
- Python 3.8或更高版本
- ultralytics库
- opencv-python库
- numpy库
🔧 安装指南
#=
2. 安装依赖项
pip install -r requirements.txt
⚙️ 配置说明
监控源设置
- 在项目目录下创建
config.py
配置文件 - 添加监控视频流地址:
CCTV_URL = "您的监控视频流地址"
焦距校准(关键步骤)
- 运行
distance_calculator.py
中的calculate_focal_length
方法 - 将已知尺寸的物体放置于已知距离处
- 测量物体在画面中的像素宽度
- 使用实测数据更新校准方法:
def calculate_focal_length():
known_distance = 2.0 # 单位:米
known_width = 0.5 # 单位:米
perceived_width = 250 # 单位:像素
return (perceived_width * known_distance) / known_width
🚀 使用说明
- 启动应用程序:
python yolo_distance.py
- 系统将显示带检测框和距离数据的实时画面
- 按
Q
键退出程序
📝 重要注意事项
- 请确认YOLOv8模型中"Person"和"Monitor"的类别ID设置正确
- 根据实际情况调整
distance_calculator.py
中的known_width
参数 - 精确的焦距校准是保证测算精度的关键
- 实际性能受硬件配置和场景复杂度影响
🖥️ 实时分析界面示例
[监控画面]
┌──────────────────────┐
│ ████████████████ │
│ █ 人员1.8m ████ │
│ ████████████████ │
│ │
│ ████████████████ │
│ █ 显示器3.2m ██ │
│ ████████████████ │
└──────────────────────┘
⚠️ 精度优化建议
- 定期进行焦距重新校准(建议每月一次)
- 确保监控摄像头保持固定位置
- 对于关键区域,建议使用4K分辨率摄像头
- 复杂光照环境下建议开启HDR模式