基于YOLOv8与OpenCV的车道线及车辆检测系统

在这里插入图片描述

基于YOLOv8与OpenCV的车道线及车辆检测系统

▌项目概述
本项目融合YOLOv8目标检测与OpenCV计算机视觉技术,实现实时车道线识别、车辆检测及距离估算功能,为道路环境分析提供完整解决方案。

▌核心功能
智能车道检测

  • 基于边缘检测与霍夫变换的精准识别
  • 动态ROI(感兴趣区域)聚焦技术

多目标车辆识别

  • YOLOv8模型实时检测各类车辆
  • 带置信度的边界框标注(阈值≥0.5)

距离测算系统

  • 基于边界框尺寸的动态测距算法
  • 可调节的焦距参数(默认1000像素)

▌快速部署


pip install opencv-python-headless numpy ultralytics
python video.py

在这里插入图片描述

▌技术实现详解
1. 车道检测流程
① ROI区域掩膜处理

def region_of_interest(img, vertices):
    mask = np.zeros_like(img)
    cv2.fillPoly(mask, [vertices], 255)
    return cv2.bitwise_and(img, mask) 

② 双阶段边缘检测

gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
canny = cv2.Canny(gray, 100, 200)  # 高低阈值优化

③ 霍夫线变换

lines = cv2.HoughLinesP(
    cropped_image,
    rho=6,
    theta=np.pi/60,
    threshold=160,
    minLineLength=40,
    maxLineGap=25
)

2. 车辆检测模块
① YOLOv8模型加载

model = YOLO('weights/yolov8n.pt')  # 支持自定义模型

在这里插入图片描述

② 动态边界框标注

for box in results[0].boxes:
    x1, y1, x2, y2 = map(int, box.xyxy[0])
    if model.names[int(box.cls)] == 'car':
        cv2.rectangle(frame, (x1,y1), (x2,y2), (0,255,255), 2)

③ 距离估计算法

def estimate_distance(bbox_width):
    return (2.0 * 1000) / bbox_width  # 已知车辆宽度2米

▌实时处理管线

while cap.isOpened():
    ret, frame = cap.read()
    lane_img = lane_pipeline(frame)
    results = model(frame) 
    for box in results[0].boxes:
        # 综合标注逻辑
    cv2.imshow('智能道路分析系统', output_frame)

▌效果演示
系统实时输出包含以下要素的画面:

  • 彩色标注的车道线
  • 带置信度的车辆边界框
  • 动态距离显示(米)

▌应用前景
• 自动驾驶感知系统
• 智能交通监控
• 驾驶辅助预警系统

注:实际部署时需根据摄像头参数调整焦距(1000)和已知物体宽度(2.0)参数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值