YOLOv8 实时视频流目标追踪系统与指定区域统计计数

YOLOv8 实时YouTube直播流目标追踪系统详解

YOLOv8 实时YouTube直播流目标追踪系统

本项目提供基于Flask的Web应用程序,可实时处理YouTube直播视频流,通过YOLOv8实现目标检测与追踪,并展示带有边界框和类别统计的处理画面。该系统同时提供获取目标数量的API接口。
在这里插入图片描述

核心功能

• 实时获取并处理YouTube直播视频流
• 采用YOLOv8模型进行目标检测与追踪
• 自定义监控区域(ROI)实现目标移动监测
• 统计穿越预设虚拟线的目标数量
• 提供可视化网页界面展示处理后的视频流
• 支持通过API获取实时目标统计数量
在这里插入图片描述

环境要求

运行前请确保安装以下依赖库:
pip install flask opencv-python numpy ultralytics shapely yt-dlp

在这里插入图片描述

安装与使用

1
2. 安装依赖库:
pip install -r requirements.txt

  1. 启动Flask应用:
    python app.py

  2. 浏览器访问:
    http://localhost:8080/

配置说明

• 修改app.py中的youtube_live_id变量为指定YouTube直播ID
• 如需使用自定义模型,请调整YOLO模型路径
• 可通过修改roi_points和line_start/line_end自定义监控区域与检测线

API接口

• GET /video_feed - 获取带目标追踪的视频流
• GET /counts - 返回JSON格式的检测目标数量

部署方案

常规部署:
export PORT=8080
python app.py

Docker容器化部署:
docker build -t yolo-stream .
docker run -p 8080:8080 yolo-stream

1. 系统概述

本项目是一个基于 Flask 框架的 Web 应用程序,能够实时处理 YouTube 直播视频流,并利用 YOLOv8(You Only Look Once v8) 深度学习模型进行 目标检测与追踪。系统的主要功能包括:

  • 实时视频流处理:通过 yt-dlp 库获取 YouTube 直播流,并使用 OpenCV 进行解码。
  • 目标检测与追踪:采用 YOLOv8(Ultralytics 实现)检测视频中的物体,并利用 ByteTrackBoT-SORT 等算法进行目标追踪。
  • 自定义监控区域(ROI):用户可以设定一个 多边形区域(使用 shapely 库计算),仅在该区域内进行目标检测,减少计算量。
  • 虚拟线计数:在视频画面中定义一条 检测线,系统会统计 跨越该线的目标数量(适用于车流统计、人流监控等场景)。
  • 可视化界面:通过 Flask 渲染 HTML 页面,实时显示 带边界框和类别标签的视频流,并动态更新目标数量。
  • RESTful API:提供 /counts 接口,返回 JSON 格式的统计结果,方便与其他系统(如数据分析平台、IoT 设备)集成。
2. 技术架构
2.1 核心组件
  • 前端(Web 界面)
    • 使用 Flask 模板引擎(Jinja2) 渲染 HTML,并通过 <img> 标签动态加载视频流(/video_feed 端点)。
    • 可结合 JavaScript(AJAX) 定期请求 /counts API,实现动态数据更新。
  • 后端(Flask + YOLOv8)
    • 视频流获取yt-dlp 下载 YouTube 直播流,OpenCV 逐帧解码。
    • 目标检测:加载 YOLOv8s / YOLOv8m(轻量级模型,平衡速度与精度)。
    • 目标追踪:可选 ByteTrack(默认)DeepSORT,计算目标的 运动轨迹
    • ROI 检测:使用 shapely.geometry.Polygon 判断目标是否在指定区域内。
    • 虚拟线计数:基于 目标中心点坐标变化,判断是否跨越检测线(如 y=300 的水平线)。
  • API 接口
    • GET /video_feed:返回 MJPEG 流(Motion-JPEG),供前端显示。
    • GET /counts:返回 {"car": 10, "person": 5} 格式的统计结果。
2.2 数据处理流程
  1. 输入:YouTube 直播 URL(如 https://youtu.be/XXXXXX)。
  2. 视频解码OpenCV 逐帧读取,分辨率可调整(默认 640x480)。
  3. YOLOv8 检测
    • 输入帧 → YOLOv8 模型 → 输出 边界框(bbox) + 类别(class) + 置信度(conf)
  4. 目标追踪
    • 计算每个目标的 ID,避免重复计数。
  5. ROI & 虚拟线逻辑
    • 仅统计 进入 ROI 区域 的目标。
    • 当目标中心点 从虚拟线一侧移动到另一侧 时,计数器 +1。
  6. 输出
    • 视频流:叠加 bbox、ID、类别、计数
    • API:返回实时统计结果。
3. 应用场景
  • 智慧交通:统计高速公路车流量。
  • 安防监控:检测入侵者或异常行为。
  • 零售分析:商场人流量统计。
  • 工业检测:生产线物品计数。
4. 优化与扩展
  • 模型优化:使用 TensorRT 加速 YOLOv8,提升 FPS。
  • 多摄像头支持:扩展为 RTSP / IP Camera 输入。
  • 云部署:通过 Docker + Kubernetes 实现弹性伸缩。
  • 报警功能:当目标数量超过阈值时,触发 邮件/短信通知

本系统适用于 实时监控场景,代码结构清晰,易于二次开发,欢迎贡献改进! 🚀

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值