多输入多输出预测全家桶来啦!解决你的模型选择困难症!论文随便水!

        声明:文章是从本人公众号中复制而来,因此,想最新最快了解各类智能优化算法及其改进的朋友,可关注我的公众号:强盛机器学习,不定期会有很多免费代码分享~

        以往的回归模型大多是多输入单输出的输入格式,例如,输入光照、温度等变量,则输出光伏功率。后台经常有小伙伴问我有没有多输入多输出的预测模型,今天就给大家带来一期多输入多输出预测全家桶,包含LSTM、BP、CNN-BiGRU、LSSVM等多种机器学习与深度学习模型。

        此次全家桶与之前区间预测全家桶和注意力全家桶的承诺一样,一次购买,永久更新!早下手早优惠!

        多输入多输出模型,顾名思义,在实际应用中,许多系统和过程不仅受到多个因素的影响,而且需要同时预测多个相关的输出。例如,在环境监测中,我们需要同时预测温度、湿度、空气质量等多个环境指标,输入变量则为风速、风向、降水量、气压、太阳辐射强度等多个变量,因为这些气象参数会直接影响空气污染物的扩散和沉降。

        为了方便大家替换自己的数据集,我们以一个经典的多输入多输出回归预测数据集为例,展示一下替换自己的数据集的过程,非常方便。首先,各个变量采用特征1、特征2…表示,无实际含义,最后两列为输出,即待预测的变量。

        更换自己的数据时,几个输出变量只需放在最后几列即可,前面的特征数量不限。比如,你有10个特征4个输出变量,只需把这4个变量放在最后4列,前面10列放特征即可,然后在代码里把outdim变量更改为4即可,其余代码无需更改,非常方便适合新手小白!

        这里以CNN-BiGRU模型为例,展示一下模型运行结果(不同模型出图数量与效果可能略有不同,具体可查看全家桶中每个模型的链接):

        因为我的数据集是两个输出,因此有两张预测效果图,每张图对应一个预测变量,并且分成上下同时显示训练集预测结果和测试集预测结果,方便大家查看与对比~

        以下是CNN-BiGRU的网络结构图,非常清晰(深度学习模型才有):

        命令行窗口误差显示:

        可以看到,误差显示非常清晰,每一个输出都会分别显示出对应的R2、MAE、MSE、MAPE,同时CNN-BiGRU模型在这个数据集的精度上非常高,两个输出精度均达到了97%以上。

        关键是,要把自己的数据集代入,看看到底哪个模型适配你的数据集。在没有尝试之前,没有任何人能给出你哪个模型最好的答案。

        另外也想提醒大家的一点是,如果一个模型效果不佳,并不代表这个模型没有任何用处,大家在写论文的时候,完全可以把它当作对比模型进行对比,从而增强文章所选模型的说服力。

        因此,目前的全家桶已经包含了7种主流及小众模型,包括优化算法优化的模型以及非优化算法的原始模型,大家也可以自行尝试哪个模型更加匹配自己的数据集!具体如下图片所示!

        购买后如果以后推出其他多输入多输出预测模型,直接免费下载,无需再次付费。

        但如果你之后再买,一旦推出新模型,价格必然会上涨。因此,需要创新的小伙伴请尽早下手。

        如果需要以上完整Matlab代码,只需点击下方小卡片,再后台回复关键字,不区分大小写:

多输出全家桶

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值