声明:文章是从本人公众号中复制而来,因此,想最新最快了解各类智能优化算法及其改进的朋友,可关注我的公众号:强盛机器学习,不定期会有很多免费代码分享~
目录
哈里斯鹰优化算法(Harris Hawks Optimization, HHO)是一种新型的元启发式算法(智能优化算法),灵感来源于哈里斯鹰的群体生存过程。该算法非常受大家欢迎,改进它的人不计其数,也非常适合作为对比算法!该成果由Heidari AA于2019年8月发表在SCI一区Top期刊《Future Generation Computer Systems》上!
谷歌学术上引用量显示,该算法发表以来,被引次数达到了5188次,妥妥的高被引论文!
原理简介
灵感:哈里斯鹰优化算法灵感来源于自然界中哈里斯鹰的合作行为和追逐方式,即突袭。在这种聪明的策略中,几只鹰从不同的方向合作扑向猎物,试图出其不意。哈里斯鹰可以根据场景的动态性质和猎物的逃脱模式揭示各种追逐模式。这
一、探索行为
如果|E|不小于1,哈里斯鹰在全域搜寻范围内任意寻找目标物。若存在等概率0.5的栖息情况,哈里斯鹰栖息点的选择会分析随机猎物、猎物的具体分布情况考虑与群体中央具体坐标的向量差:
式中:X(t+1)为第t+1次迭代发生时哈里斯鹰坐标;Xrand(t)为第t次迭代时随机情况下该物种的坐标,Xrabbit(t)和Xm(t)为猎物具体坐标、哈里斯鹰群中点坐标,l和u为数值范围临界数值。式(1)、(2)中对猎物逃逸能量|E|≥1状态下HHO算法的探索行为,在迭代过程中,|E|逐渐变小:
式中:T代表最高迭代次数;t为当前迭代步数;E0为初始能量值,对于[-1,1]可实现基于均匀状态的分布随机数。
二、开发行为
如果|E|<1,则哈里斯鹰的猎物位置可寻,HHO算法即刻启动物种开发。这个物种开发导致随机数、能量绝对值的比较。相比于0.5,可生成以下4种策略。
策略1:软包围。|E|≥0.5,同时随机数≥0.5,此围猎物种实现该谋略:
式中J为被围猎物种的跳跃情况。
策略2:硬包围。在|E|<0.5同时随机数≥0.5时,哈里斯鹰采取硬包围策略:
式中,由于猎物一直在逃逸导致逃逸水平下降,不能实现跳跃J,唯有停留于原地待捕。
策略3:高速俯冲软包围。在|E|≥0.5同时随机数小于0.5的情况下,由于猎物跳跃能力J较高,哈里斯鹰开始激素俯冲突袭,若突袭未能取得成功(Y的适应度未得到优化),就会开启随机游走Z,若游走未取得成功就会回到初始位置:
式中:S为随机向量;D代表问题维度;LF代表Levy飞行函数。
策略4:高速俯冲硬包围。在|E|<0.5同时随机数小于0.5的情况下,猎物兔子缺乏一定的逃逸水平,哈里斯鹰依据群体中心与猎物所在的位置实施围捕行为,不断拉近猎物和种群的距离差值,具体策略为:
若突袭未成功(适应度未得到优化),就启动随机游走Z,若游走不成功就会回到初始位置。
算法伪代码
为了使大家更好地理解,这边给出作者算法的伪代码,非常清晰!
如果实在看不懂,不用担心,可以看下源代码,再结合上文公式理解就一目了然了!
性能测评
原文作者在在29个基准测试函数和几个实际工程问题上验证了所提出的HHO优化器的有效性。统计结果和比较表明,与已建立的元启发式技术相比,HHO算法提供了非常有前途的结果。
这边为了方便大家对比与理解,采用23个标准测试函数,即CEC2005,设置种群数量为30,迭代次数为1000,和24年最新的鹅优化算法GOOSE进行对比!这边展示其中5个测试函数的图,其余十几个测试函数大家可以自行切换尝试!
可以看到,这个算法在大部分函数上均优于24年新出的GOOSE算法,说明该算法性能还是比较不错的!大家应用到各类预测、优化问题中也是一个不错的选择~
参考文献
[1]Heidari A A, Mirjalili S, Faris H, et al. Harris hawks optimization: Algorithm and applications[J]. Future generation computer systems, 2019, 97: 849-872.
完整代码
如果需要免费获得图中的完整测试代码,只需点击下方小卡片,再后台回复关键字,不区分大小写:
HHO
也可点击下方小卡片,再后台回复个人需求(比如HHO-Transformer)付费定制以下HHO算法优化模型(看到秒回):
1.回归/时序/分类预测类:SVM、RVM、LSSVM、ELM、KELM、HKELM、DELM、RELM、DHKELM、RF、SAE、LSTM、BiLSTM、GRU、BiGRU、PNN、CNN、BP、XGBoost、TCN、BiTCN、ESN、Transformer等等均可~
2.组合预测类:CNN/TCN/BiTCN/DBN/Transformer/Adaboost结合SVM、RVM、ELM、LSTM、BiLSTM、GRU、BiGRU、Attention机制类等均可(可任意搭配非常新颖)~
3.分解类:EMD、EEMD、VMD、REMD、FEEMD、TVFEMD、CEEMDAN、ICEEMDAN、SVMD、FMD等分解模型均可~
4.路径规划类:机器人路径规划、无人机三维路径规划、冷链物流路径优化、VRPTW路径优化等等~
5.优化类:光伏电池参数辨识优化、光伏MPPT控制、储能容量配置优化、微电网优化、PID参数整定优化、无线传感器覆盖优化、图像分割、故障诊断等等均可~~
6.原创改进优化算法(适合需要创新的同学):原创改进哈里斯鹰优化算法HHO以及班翠鸟PKO、蜣螂DBO等任意优化算法均可,保证测试函数效果!