壮丽细尾鹩莺优化算法(SFOA)-2025年SCI一区新算法-公式原理详解与性能测评 Matlab代码免费获取

        声明:文章是从本人公众号中复制而来,因此,想最新最快了解各类智能优化算法及其改进的朋友,可关注我的公众号:强盛机器学习,不定期会有很多免费代码分享~

目录

原理简介

一、初始化阶段

二、幼鸟生长阶段

三、繁殖哺育阶段

四、天敌规避阶段

算法流程图和伪代码

性能测评

参考文献

完整代码


壮丽细尾鹩莺优化算法(Superb Fairy-wren Optimization Algorithm, SFOA)是一种新型的元启发式算法(智能优化算法),作者从壮丽细尾鹩莺的生活习性中得到启发,模拟细尾鹩莺在幼鸟生长、繁殖和取食、躲避天敌三个阶段的自然行为,算法能够高效、准确地完成跨区域的优化任务!该成果由贾鹤鸣等人于2025年2月发表在SCI一区期刊《Cluster Computing上!

由于发表时间较短,谷歌学术上还没人引用!你先用,你就是创新!

原理简介

灵感:壮丽细尾鹩莺灵活狩猎,喙窄,下腹部宽大,但容易受到捕食者的攻击。当面临威胁时,它们会通过某些行为和叫声警告同伴,例如低下头,展开翅膀,抖动羽毛,这些习惯和行为特征对种群繁殖至关重要,并激发了优化算法的发展,模仿壮丽细尾鹩莺的自然行为。

一、初始化阶段

在开始主要策略前,需要先初始化种群的位置:

其中lb与ub分别表示搜索空间在第j维的下、上边界,rand(0,1)为区间[0,1]内的随机数。

二、幼鸟生长阶段

当判断到幼鸟在种群中的比例较大(用一个系数r来衡量)时,算法进入幼鸟生长阶段。因为幼鸟数量过多会影响种群整体生存,需要通过大量学习与位置变动,促使幼鸟尽快成长为成鸟,从而提升搜索的全局探索能力。此时,各个体的更新可建模为:

其中X(t) i,j 表示第 i个体在迭代(或评估)时刻t的坐标,rand(0,1) 是随机噪声项,用来增强搜索的多样性。如果此更新能使目标函数取得更优值,则将新位置替换进种群。该阶段倾向在解空间中进行大范围走动,实现广泛的探索。

三、繁殖哺育阶段

当算法检测到环境危险因子较低(用s表示)且成鸟为主时,种群会转入繁殖哺育阶段。此时,壮丽细尾鹩莺之间采用协同育雏的方式:多个成鸟共同孵化、 轮流觅食与教导幼鸟。算法中,为评估环境危险程度,首先用

来计算环境风险量,这里r1,r2 同为[−1,1] 区间内的随机数或满足某种分布的随机数,以模拟风险的波动。当s值偏小意味着环境相对安全,适合繁殖并在局部作精细搜索。在此过程中,对个体位置的更新可表达为:

其中Xb为当前全局最优位置,C为一个常数(常取0.8),p用来描述成鸟“轮流教学”时活动范围逐渐扩大的过程,它可以用正弦函数与当前评估次数的比例来计算,比如:

其中FEs 为当前已进行的评价次数,MaxFEs 为最大评价次数。 通过这样的方式,随着繁殖孵化周期的推移,个体在局部范围的活动幅度逐渐增大,利于种群在已知较优解附近作深度开发。

四、天敌规避阶段

若检测到环境的危险因子s较高,表明当前情形不利于繁殖,种群会切换到天敌规避阶段。此时,算法参考壮丽细尾鹩莺遇到捕食者时的两种典型行为:被天敌盯上的鸟快速逃窜,而其他同伴会在空中抖动羽毛示警,形成较大的扰动。以此来设计个体位置更新的模式,包括一个莱维飞行随机步长l,以及自适应平衡因子k来控制逃逸幅度,令整个种群获得随机跳动,以跳出局部陷阱。其更新可写为:

其中Xb表示全局最佳解位置,l为Levy飞行产生的随机步长,用于大范围跳跃,k则随评估次数逐渐变化以协调逃逸距离。当天敌来袭时,个体的逃逸与其余个体的协同干扰可以较大地提升搜索的跳跃性,从而摆脱局部最优的束缚。最后,为了将这三种阶段的更新机制统一到同一次搜索中,可以写成:

其中r为种群内部幼鸟占比的判定阈值,如果r>0.5,说明幼鸟多,需要激发幼鸟生长阶段的广域探索;如果r≤0.5,表示成鸟数量较多,需要进一步判断危险因子s的大小:若s<20,则进入繁殖哺育阶段做局部精细搜索;若s≥20,则进入天敌规避阶段以随机跳跃。

算法流程图和伪代码

为了使大家更好地理解,这边给出作者算法的流程图和伪代码,非常清晰!

如果实在看不懂,不用担心,可以看下源代码,再结合上文公式理解就一目了然了!

性能测评

原文作者采用CEC 2017和CEC 2022的测试函数、14个CEC约束工程设计问题、5个约束工程设计问题和一个包装方法的高维特征选择问题,与几种经典优化算法和新型优化算法进行了比较,结果表明SFOA具有高效性和鲁棒性以及其解决实际应用问题时的实用性和高效性。

这边为了方便大家对比与理解,采用23个标准测试函数,即CEC2005,设置种群数量为30,迭代次数为1000,和2024年新出的极光优化算法进行对比!这边展示其中5个测试函数的图,其余十几个测试函数大家可以自行切换尝试!

可以看到,这个算法能够适应不同类型的函数,与极光优化算法相比不相上下!大家应用到各类预测、优化问题中也是一个不错的选择~

参考文献

[1]Jia H, Zhou X, Zhang J, et al. Superb Fairy-wren Optimization Algorithm: a novel metaheuristic algorithm for solving feature selection problems[J]. Cluster Computing, 2025, 28(4): 246.

完整代码

如果需要免费获得图中的完整测试代码,只需后台回复关键字,不区分大小写:

SFOA

也可后台回复个人需求(比如SFOA-BiGRU-Attention)付费定制以下SFOA算法优化模型(看到秒回):

1.回归/时序/分类预测类:SVM、RVM、LSSVM、ELM、KELM、HKELM、DELM、RELM、DHKELM、RF、SAE、LSTM、BiLSTM、GRU、BiGRU、PNN、CNN、BP、XGBoost、LightGBM、TCN、BiTCN、ESN、Transformer等等均可~

2.组合预测类:CNN/TCN/BiTCN/DBN/Transformer/Adaboost结合SVM、RVM、ELM、LSTM、BiLSTM、GRU、BiGRU、Attention机制类等均可(可任意搭配非常新颖)~

3.分解类:EMD、EEMD、VMD、REMD、FEEMD、TVFEMD、CEEMDAN、ICEEMDAN、SVMD、FMD等分解模型均可~

4.路径规划类:机器人路径规划、无人机三维路径规划、冷链物流路径优化、VRPTW路径优化等等~

5.优化类:光伏电池参数辨识优化、光伏MPPT控制、储能容量配置优化、微电网优化、PID参数整定优化、无线传感器覆盖优化、图像分割、故障诊断、车间调度等等均可~~

6.原创改进优化算法(适合需要创新的同学):原创改进2025年的壮丽细尾鹩莺优化算法SFOA以及鱼鹰OOA、蛇鹫SBOA等任意优化算法均可,保证测试函数效果,一般可直接核心!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值