m序列是一种伪随机序列,最大长度为,将n位的m序列看作一个变量的话,这个变量服从的均匀分布,而高斯白噪声服从的是高斯分布,不能将m序列直接作为噪声源来产生噪声调频信号,而可以采用Box_Muller变换将m序列变换成高斯噪声。
Box_Muller变换是一种通过服从均匀分布的随机变量,来构建服从高斯分布的随机变量的一种方法,方式为:
、服从的均匀分布,通过Box_Muller变换即:
X、Y服从均值为0,方差为1的高斯分布;
下面用 matlab验证这种变换的可行性:
先产生两个均匀分布的变量m1、m2,然后通过Box_Muller得到u1。
MATLAB代码如下:
N=1024; %序列的长度
m1=rand(1,N); %产生一个均匀序列
m2=rand(1,N);
v1=mean(m1); %均值
v2=mean(m2); %均值
n1=var(m1); %方差
n2=var(m2); %方差
u1=cos(2*pi.*m1).*sqrt(-2.*log(m2)); % [0:1]的均匀分布变成标准高斯分布
u_v=mean(u1);
u_n=var(u1);
得到的序列的均值和方差如下图所示,从均值和方差来看,得到序列的均值接近0,方差接近于1;
然后绘制直方图,以及进行正态拟合。
从直方图来看,m1、m2服从均匀分布,Box_Muller变换后序列的直方图接近于高斯变换,而且从拟合数据来看,变换后的数据分布与拟合的红线很接近,说明产生的序列满足高斯分布的特点。这就提供了m序列产生高斯噪声的依据。
m序列生成高斯噪声
刚才产生的序列由rand函数直接生成的均匀序列,下面我们利用移位寄存器的方式来产生m序列来进行验证。
将产生的n位m序列排列成一个2进制数,那么的序列服从的均匀分布,然后利用Box_Muller变换将两个互不相同的m序列生成一个满足高斯分布的序列,
用matlab进行验证,代码如下:
N=2^15;
Np = 15;
length_M= 15;
%% M1序列
feedback=[1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1];
register = [zeros(1,length_M-1) 1];
m_ma=zeros(N,Np);
for i=1:N
BP_s(i) = mod(sum(feedback(2:end).*register),2);
for j=1:length_M-1
register(length_M-j+1) = register(length_M-j); %右移
end
register(1)=BP_s(i) ; %反馈
m_ma(i,:)=register(1:Np);
end
%BP_s=2*(BP_s-0.5);
m_float=zeros(1,N);
for i=1:N
for j=1:Np
m_float(i)= m_float(i)+2^(j-1)* m_ma(i,j);
end
m_float(i)= m_float(i)/2^Np;
end
%% m2序列
feedback_2=[1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1];
register_2 = [zeros(1,length_M-1) 1];
m_ma_2=zeros(N,Np);
for i=1:N
BP_s_2(i) = mod(sum(feedback_2(2:end).*register_2),2);
for j=1:length_M-1
register_2(length_M-j+1) = register_2(length_M-j); %右移
end
register_2(1)=BP_s_2(i) ; %反馈
m_ma_2(i,:)=register_2(1:Np);
end
%BP_s=2*(BP_s-0.5);
m_float_2=zeros(1,N);
for i=1:N
for j=1:Np
m_float_2(i)= m_float_2(i)+2^(j-1)* m_ma_2(i,j);
end
m_float_2(i)= m_float_2(i)/2^Np;
end
%% 产生高斯噪声
u1=cos(2*pi.*m_float).*sqrt(-2.*log(m_float_2)); %[0:1]的均匀分布变成标准高斯分布
每个m序列的产生利用了15位的移位寄存器,然后将15位的m序列组成一个浮点数,两组均匀分布的序列通过Box_Muller变换得到高斯噪声。
仿真结果如下:
由上述仿真得到的m序列组合的数据明显符合均匀分布,而经过Box_Muller变换的序列服从高斯分布