博客摘录「 YOLOv5模型剪枝压缩」2024年5月11日

添加L1正则来约束BN层系数

The semantic edge information can improve the performance of salient object detection. Specifically, semantic edge information enhances performance in the following aspects:

1. Clear edge structure: By embedding edge prior knowledge into the network, ENFNet better maintains the boundary clarity of salient objects. Traditional fully convolutional networks (FCNs) tend to blur spatial structures and edges due to successive strides and pooling operations, whereas ENFNet effectively embeds edge information into hierarchical feature maps through edge guidance blocks.

2. Precise saliency region localization: Edge guidance blocks not only perform feature operations but also spatial transformations to achieve effective edge embedding. This helps in more accurately locating the boundaries of salient objects in saliency detection.

3. High-quality saliency map generation: ENFNet generates saliency maps with high-quality boundary awareness, thanks to the network's layered embedding of detailed edge information.

4. Performance improvement: ENFNet achieves best-in-class performance across all datasets compared to existing state-of-the-art methods, indicating that edge information is effective in improving the accuracy of saliency detection.

5. Boundary preservation: By using IoU boundary loss, ENFNet further optimizes the accuracy of saliency boundaries. This loss function calculates the difference between the true boundary and the predicted boundary, aiding in the generation of saliency maps with clear boundaries.

6. Multi-scale feature fusion: Through a hierarchical edge-guided non-local structure, ENFNet combines local contrast features and global context features, enhancing its ability to detect salient objects.

BSDS500 轮廓检测与语义分割数据集_数据集-阿里云天池

【免费】BDCNWEIGHTS资源-CSDN文库

Learning Spatial Context: Using Stuff to Find Things (stanford.edu)

阅读了三篇关于基于深度学习的边缘检测的综述论文,发现了12篇关于更流行的算法的论文。整理了模型架构和指标信息。

After reading three review papers on deep learning-based edge detection, I discovered 12 papers on more popular algorithms. I have organized the model structures and metric information.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值