量子计算机就其本质而言,非常适合帮助科学家们在化学领域取得突破性发现,因为它可以比经典计算机,更有效地进行分子模拟。
随着量子计算机能力的提升,以及过程中对其更深入的理解,人类也许很快就能精确地预测分子的性质,预测结果与实际的实验相比不相上下。
要想准确描述分子,需要在许多竞争效应中达到微妙的平衡,而这又需要大量的量子比特和量子运算。
而为了帮助量子计算机达到实现化学发现所需的精度要求,IBM的Qiskit跨学科研究团队,与戴姆勒汽车公司(Daimler AG)和弗吉尼亚理工大(Virginia Tech)的合作伙伴一起,借助经典计算机,从根本上减少了量子计算机模拟分子所需的量子比特数。
团队证明,在如今的小型量子计算机上,可以以更高的精确度来计算一些较为典型的分子(如氟化氢)性质。与使用相同的基底函数组进行计算相比,模拟方法并没有明确地模拟出电子-电子之间的尖端(electron-electron cusp)[2]。
图1|出现尖端的条件(来源:亚利桑那大学)
团队通过将量子模拟方法,与分子的动能和势能(称为哈密顿量)在计算中表示方式的变化相结合,来弥补资源的限制。实验成果及更多技术细节发表在《物理化学化学物理》(Physical Chemistry Chemical Physics)上[3]。
更好的“哈密顿量”,更佳的模拟
哈密顿量以爱尔兰数学家威廉·罗文·汉密尔顿(William Rowan Hamilton)爵士的名字来命名,它是一个决定化学体系性质的数学函数。
要想准确描述一个分子的哈密顿量,需要大量的轨道,也就是电子分布的空间函数。轨道基组越大,量子比特和量子运算的成本就越高。
因此,团队无法在量子硬件模拟中呈现出足够多的轨道,来将现实世界中复杂分子的电子相关联。
图2|氟化氢的分子轨道(来源:chemistry)
在这种情况下,研究人员通常会采取以下两种方式中的一种:等到量子计算机有足够多的量子比特时,再来模拟特定研究所需的所有轨道;或者继续进行对理解概念有帮助的计算,但对分子真正的化学性质一知半解。
而团队选择了第三种途径,使用“互相关(transcorrelated)”的哈密顿量,通过解释一个基本事实,改进了对于分子的描述:由于电子是带负电荷的粒子,所以它们相互排斥。
这里的“互相关”哈密顿量可以理解为,在传统哈密顿量的基础上,提供一些关于相互作用的额外信息,这些相互作用需要更大的基础集合来进行精确描述。因此,量子计算机不能使用传统的哈密顿量。
这种重要而复杂的现象,就是上文中提到的电子-电子之间的尖端,需要大量的轨道才能精确描述。
此方法建立在弗吉尼亚理工大的经典模拟工作基础之上,使基于互相关的哈密顿量实现量子模拟,该哈密顿量中几乎包含有电子-电子之间的尖端。
图3|精确度的提升过程(来源:《物理化学化学物理》)
实验结果得到了更为精确的分子模拟,而无需增添数百个更多的量子比特,或是加深量子线路。其中,量子线路代表量子比特的数量以及对其施加的运算。
更深层的线路可以执行更多操作,但在量子计算过程中,出错的机会也会相应增加。
更深的远见,更大的使命
尽管今天的高性能经典计算机,可以进行详细的化学模拟,但量子计算机有潜力提供指数级别上更为精确地模拟,这种模拟是经典计算机无法处理的复杂且大型的分子系统。
像戴姆勒这样的汽车制造商,正在研究用于量子化学和材料科学的新型量子算法,表示对此次的合作十分感兴趣。
新材料的发现,有利于开发出性能更高、寿命更长且价格更低的电池。戴姆勒公司很早就意识到,电动汽车在减少汽车排放和化石燃料消耗方面的积极作用。
图4|戴姆勒的电动车型(来源:戴姆勒)
其与IBM在量子计算领域的合作,也符合戴姆勒公司提倡电气化的初衷。团队的方法是在量子计算机上,以实验精度计算材料特性的一个必经步骤。
模拟的轨道越多,就越接近真实实验的结果。更好的建模和模拟,终将印证对于特定性能新材料的预测。
参考链接:
[1]https://medium.com/qiskit/a-tale-of-colliding-electrons-boosting-the-accuracy-of-chemical-simulations-on-quantum-computers-50a4b4ee5c64
[2]https://en.wikipedia.org/wiki/Kato_theorem
[3]https://pubs.rsc.org/en/content/articlelanding/2020/CP/D0CP04106H#!divAbstract
声明:此文出于传递高质量信息之目的,若来源标注错误或侵权,请作者持权属证明与我们联系,我们将及时更正、删除,所有图片的版权归属所引用组织机构,此处仅引用,原创文章转载需授权。