多元线性回归预测:餐馆营业额与多因素实战

本文通过多元线性回归分析探讨餐馆营业额与周边居民人数、用餐平均支出、居民月平均收入、周边餐馆数和距市中心距离的关系。通过模型建立、估计和检验,得出模型具有较高的拟合度,揭示了各因素对营业额的影响,可用于餐馆营销策略的改进。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欢迎关注天善智能,我们是专注于商业智能BI,人工智能AI,大数据分析与挖掘领域的垂直社区,学习,问答、求职一站式搞定!

对商业智能BI、大数据分析挖掘、机器学习,python,R等数据领域感兴趣的同学加微信:tstoutiao,邀请你进入数据爱好者交流群,数据爱好者们都在这儿。

作者:herain  R语言中文社区专栏作者

知乎ID:https://www.zhihu.com/people/herain-14


前言

上篇

我们用一元线性回归预测销售收入与广告支出实战,但世界是复杂的,有因有果,因果迭交,我们常说事或物是多种因素共同作用的结果,今天我们从统计学角度,去分析多种因素是怎么样作用一种事物,产生不一样的结果。


综述

以餐馆营业额作为果(y= 日均营业额/万元),周边居民人数(x1 /万人),用餐平均支出(x2 / 元/人),周边居民月平均收入(x3/ 元),周边餐馆数(x4/ 个),距市中心距离(x5/ km)作为因素,来探索因与果之间的回归模型,发现规律,改善餐馆营销方式,提高餐馆的营业额。


分析步骤

餐馆营业额与多因素的回归模型分析步骤:

1.确定所关注的因变量y 和影响因变量的k个自变量

2.假定因变量y 与 k 个自变量之间为线性关系,并建立线性关系模型

3.对模型进行估计和检验

4.判别模型中是否存在多重共线性,如果存在,进行处理

5.利用回归方程进行预测

6.对回归模型进行诊断


1 确定因变量y和影响因变量的k个自变量

1.1 确定因变量和自变量

y:餐馆营业额作为果(y= 日均营业额/万元)

k个自变量为:

周边居民人数(x1 /万人)

用餐平均支出(x2 / 元/人)

周边居民月平均收入(x3/ 元)

周边餐馆数(x4/ 个)

距市中心距离(x5/ km)


1.2 分析的数据:

   index    y    x1    x2    x3 x4   x51      1 53.2 163.0 168.6  6004  5  6.52      2 18.5  14.5  22.5   209 11 16.03      3 11.3  88.2 109.4  1919 10 18.24      4 84.7 151.6 277.0  7287  7 10.05      5  7.3  79.1  17.4  5311 15 17.56      6 17.9  60.4  93.0  6109  8  3.67      7  2.5  53.2  21.5  4057 17 18.58      8 27.3 108.5 114.5  4161  3  4.09      9  5.9  48.7  61.3  2166 10 11.610    10 23.9 142.8 129.8 11125  9 14.211    11 69.4 214.7 159.4 13937  2  2.512    12 20.6  65.6  91.0  4000 18 12.013    13  1.9  13.2   6.1  2841 14 12.814    14  3.0  60.9  60.3  1273 26  7.815    15  7.3  21.2  51.1  2404 34  2.716    16 46.2 114.3  73.6  6109 12  3.217    17 78.8 299.5 171.7 15571  4  7.618    18 11.1  78.9  38.8  4228 11 11.019    19  8.6  90.0 105.3  3772 15 28.420    20 48.9 160.3 161.5  6451  5  6.221    21 22.1  84.0 122.6  3275  9 10.822    22 11.1  78.9  38.8  4228 10 33.723    23  8.6  90.0 105.3  3772 14 16.524    24 48.9 160.3 161.5  6451  6  9.325    25 22.1  84.0 122.6  3275 10 11.6


2 建立线性关系模型

公式:

3901436-ecf6091c54a06091

2.1 绘制多个变量的相关图:

> library(corrgram)> corrgram(example10_1[2:7], order=T, lower.panel=panel.shade,upper.panel=panel.pie,text=panel.txt)


3901436-4fc4c122c134ba47

解读相关系数矩阵图,请参考搜索,获取了解。蓝色表示正相关,红色表示负相关,对应颜色的饼图表示相关的度。


2.2 建立回归模型(检测报告,模型进行估计和检验用到了如下检测结果):

检测报告&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值