1 齐次坐标和变换矩阵
齐次坐标:将点的坐标向量扩充一维,并将增加的那个分量值规定为1
变换矩阵:
规定了用四维向量表示点的坐标的齐次坐标形式后,点的变换可以用一个4x4矩阵来统一表示
T称为变换矩阵
(1)任何一个变换都可用一个变换矩阵 T 来表示;
(2)任何一个矩阵 T 都可以表示一个变换。
2 基本几何变换
2.1 平移
矩阵:
推导过程:
当物体发生平移运动,沿三个坐标轴的平移量分别为
2.2 旋转
矩阵:
物体以z轴为转动轴发生旋转运动
2.3 缩放
矩阵:
缩放系数若为负值,则同时产生对称(镜像)运动。
3 组合变换
多步变换:
复杂运动是一序列简单运动依次进行的结果
平移运动可以任意分解,且与变换次序无关
但是转动和缩放与变换次序有关
例题:
层级变换:两个立方体Cube1、Cube2,Cube2绕固连在Cube1的转轴转动,Cube1沿x方向平移运动。
4 投影变换
4.1 平行投影
4.2 透视投影
5 视窗变换
视窗变换矩阵:
将视窗变换矩阵与投影矩阵相乘,得到标准化视口投影变换矩阵
6 摄像机变换
摄像机坐标系的定义:
在图形世界中,摄像机可以处在任意位置,而且位置可以随时发生变化。用三个向量来描述摄像机的位置和朝向:
摄像机坐标系:
世界空间到摄像机空间的变换:
7 四元数运算规则
四元数如何进行转动计算:
或·