A - 最少拦截系统
Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u
Description
某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能超过前一发的高度.某天,雷达捕捉到敌国的导弹来袭.由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹.
怎么办呢?多搞几套系统呗!你说说倒蛮容易,成本呢?成本是个大问题啊.所以俺就到这里来求救了,请帮助计算一下最少需要多少套拦截系统.
Input
输入若干组数据.每组数据包括:导弹总个数(正整数),导弹依此飞来的高度(雷达给出的高度数据是不大于30000的正整数,用空格分隔)
Output
对应每组数
据输出拦截所有导弹最少要配备多少套这种导弹拦截系统.
Sample Input
8 389 207 155 300 299 170 158 65
Sample Output
2
此题关键就是求最大非递减数列的个数,标准的动态规划问题。dp[i]表示i到i为止的最大非递减数列的个数
dp[i]等于前面比它大的数中dp的最大值+1
</pre><pre name="code" class="cpp">#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int a[1000000],sum[1000000];
int main()
{
int n;
while(scanf("%d",&n)!=EOF)
{
int i,j,max1=0;
for(i=1;i<=n;i++)
{
scanf("%d",&a[i]);
sum[i]=1;
for(j=1;j<i;j++)
{
if(a[j]<=a[i])
if(sum[i]<=sum[j]+1)
sum[i]=sum[j]+1;
}
max1=max(max1,sum[i]);
}
printf("%d\n",max1);
}
return 0;
}