ACM_模板_中国剩余定理(互质与非互质)

中国剩余(余数)定理,又称孙子定理,用于求解一组同余方程,在讲解之前还是举个例子:x==(2,3,2) mod (3,5,7) 求解x
中国剩余定理x1==(1,0,0);x2==(0,1,0);x3=(0,0,1)
x==2x1+3x2+2x3.

说的通俗一点就是一个x,除3余2,除5余3,除7余2,很明显x+lcm(3,5,7)都是这个方程的解,所以显然我们是求解最小的这个数,这个求法就是先求出一个x1,除3余1,除5余0,除7余0;找一个x2,除3余0,除5余1,除7余0;找一个x3,除3余0,除5余0,除7余1。我们要求的x = 2*x1+3*x2+2*x3,当然这个x并不一定是最小的,我们可以将其对lcm(3,5,7)取一下模即可。

这里小编不给证明(其实我也不是很清楚),这里小编就给大家看一下代码实现的这个过程,在求解1mod m的时候相当于求解逆元,我们可以用扩展欧几里德定理求解(不懂的可以点开看小编的另一篇关于这个的详解)。

此算法的模板还要分两种,被除数是否互质。

互质:

#include <cstdio>//互质
int exGcd(int a,int b,int &x,int &y)
{
	if(b == 0)
	{
		x = 1,y = 0;
		return a;
	}
	int d = exGcd(b,a%b,y,x);
	y -= a/b*x;
	return d;
}
int Chinese_Remainder(int mod[],int prime[],int len)
{
	int i,d,x,y,m,n,ret;
	ret = 0,n = 1;
	for(i=0; i<len; i++) n *= prime[i];
	for(i=0; i<len; i++)
	{
		m = n/prime[i];
		d = exGcd(prime[i],m,x,y);
		ret = (ret+y*m*mod[i])%n;
	}
	return (n+ret%n)%n;
}
int main()
{
	int n,i;
	int mod[15],prime[15];
	while(scanf("%d",&n)&&n)
	{
		for(i=0; i<n; i++)
			scanf("%d%d",&prime[i],&mod[i]);
		printf("%d\n",Chinese_Remainder(mod,prime,n));
	}
	return 0;
}


非互质:

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
#define LL __int64
const LL maxn=20;
//拓展欧几里得定理,求ax+by=gcd(a,b)的一组解(x,y),d=gcd(a,b)
void exGcd(LL a,LL b,LL &d,LL &x,LL &y)
{
    if(!b){d=a;x=1;y=0;}
    else{exGcd(b,a%b,d,y,x);y-=x*(a/b);}
}
LL Chinese_Remainder(LL n,LL a[],LL b[])
{
    LL m1,r1,m2,r2,flag=0,i,d,x,y,c,t;
    m1=a[0],r1=b[0];
    flag=0;
    for(i=1;i<n;i++)
    {
        m2=a[i],r2=b[i];
        if(flag)continue;
        exGcd(m1,m2,d,x,y);//d=exGcd(m1,m2);x*m1+y*m2=d;
        c=r2-r1;
        if(c%d)//对于方程m1*x+m2*y=c,如果c不是d的倍数就无整数解
        {
            flag=1;
            continue;
        }
        t=m2/d;//对于方程m1x+m2y=c=r2-r1,若(x0,y0)是一组整数解,那么(x0+k*m2/d,y0-k*m1/d)也是一组整数解(k为任意整数)
                //其中x0=x*c/d,y0=x*c/d;
        x=(c/d*x%t+t)%t;//保证x0是正数,因为x+k*t是解,(x%t+t)%t也必定是正数解(必定存在某个k使得(x%t+t)%t=x+k*t)
        r1=m1*x+r1;//新求的r1就是前i组的解,Mi=m1*x+M(i-1)=r2-m2*y(m1为前i个m的最小公倍数);对m2取余时,余数为r2;
                    //对以前的m取余时,Mi%m=m1*x%m+M(i-1)%m=M(i-1)%m=r
        m1=m1*m2/d;
    }
    if(flag)return -1;
    if(n==1&&r1==0)return m1;//结果不能为0
    return r1;
}
int main()
{
    LL T,i,n,tt=0;
    LL a[maxn],b[maxn];
    cin>>T;
    while(T--)
    {
        cin>>n;
        for(i=0;i<n;i++)
            cin>>a[i];
        for(i=0;i<n;i++)
            cin>>b[i];
        cout<<"Case "<<++tt<<": "<<Chinese_Remainder(n,a,b)<<endl;
    }
    return 0;
}




  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值