题意:给你C,k1,k2,b1,按字典序输出满足的所有(a,b)对
解题思路:因为对于任意n均满足,故n=1的情况也是符合的,故可得
①
而n=2的情况也是符合的,可得
②
因为①式mod C = 0 ,所以①式乘以一个数mod C 仍为0,不妨①式*,可得
所以,我们只需遍历一遍a的取值(1~C-1),利用快速幂计算出,以及,再根据式①可以算出b,再用一次快速幂求出,比较(mod C)是否等于(mod C)即可
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll pow_mod (ll x, int n, int mod)
{
ll ret = 1;
while (n)
{
if (n&1) ret = ret * x % mod;
x = x * x % mod;
n >>= 1;
}
return ret;
}
int main ()
{
int cas = 1, C, k1, b1, k2;
while (scanf("%d%d%d%d", &C, &k1, &b1, &k2) == 4)
{
printf("Case #%d:\n", cas++);
int cnt = 0;
for (int a = 1; a < C; a++)
{
int b = C - pow_mod(a, k1+b1, C);
if (pow_mod(a, k1, C) == pow_mod(b, k2, C))
{
printf("%d %d\n", a, b);
cnt++;
}
}
if (cnt == 0)
printf("-1\n");
}
return 0;
}