ramay7

https://ramay7.github.io/

HDU 3709 Balanced Number(数位dp)

题目链接:
HDU 3709 Balanced Number
题意:
把一个数字都某一位看成一个支点,左右的权值和是各个位上的数字到支点的距离乘积之和。如果存在某个支点使得左右权值和相等,这个数字就称为Balanced Number。给定区间[L,R],求Balanced Number的数字个数。
数据范围:0LR1018
分析:
BZOJ 1799 self同类分布类似,我们枚举支点位置即可。因为对于一个Balanced Number它的支点只会有1个。仔细想一下就好了。
需要注意的是记忆化的时候我们记录sum是左边权值和减去右边权值和,这样子既有利于剪枝也不会出错。还有一点对于一个区间上界数字有len位的区间,我们把0计算了len次,所以最后还要减掉len1

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
using namespace std;
typedef long long ll;

int digit[20];
ll dp[20][20][4000];

ll dfs(int pos, int pivot, int sum, int limit)
{
    if (sum < 0 || sum > pivot * (pivot + 1) / 2 * 9) return 0;
    if (pos == -1) return sum == 0;
    if (!limit && dp[pos][pivot][sum] != -1) return dp[pos][pivot][sum];
    int last = limit ? digit[pos] : 9;
    ll ret = 0;
    for (int i = 0; i <= last; ++i) {
        int next_sum = sum + i * (pos - pivot);
        ret += dfs(pos - 1, pivot, next_sum, limit && i == last);
    }
    if (!limit) dp[pos][pivot][sum] = ret;
    return ret;
}

ll solve(ll x)
{
    if (x < 0) return 0;
    else if (x == 0) return 1;
    memset(digit, 0, sizeof(digit));
    int len = 0;
    while (x) {
        digit[len++] = x % 10;
        x /= 10;
    }
    ll ret = 0;
    for (int i = 0; i < len; ++i) {
        ret += dfs(len - 1, i, 0, 1);
    }
    return ret - (len - 1); // 把0算了len次
}

int main()
{
    int T;
    ll L, R;
    scanf("%d", &T);
    while (T--) {
        memset(dp, -1, sizeof(dp));
        scanf("%lld%lld", &L, &R);
        printf("%lld\n", solve(R) - solve(L - 1));
    }
    return 0;
}
阅读更多
版权声明:缥缈玉京人,想语然、京兆眉妩。 https://blog.csdn.net/Ramay7/article/details/52374858
文章标签: HDU 数位dp
个人分类: HDU 数位dp
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

HDU 3709 Balanced Number(数位dp)

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭