首先讨论回归问题与分类问题的底层逻辑。对于回归问题来说,我们认为数据的出现具有某种“趋势。而对于分类问题来说,我们认为数据的出现具有某种“形状”。
在回归问题中,正因为我们认为数据的出现具有某种“趋势”,所以采用了线性回归来生成一个函数去预测数据的出现。可若要将线性回归应用于分类问题上时,在给数据集添加新数据时会产生逻辑上的矛盾。
由于线性回归生成出的函数为一次函数,当有新的数据添加至数据集时,会导致该函数变化,即会直接导致所有的预测结果整体变动。但是在建立分类问题模型时使用的算法不该有这样的效果。新数据加入后,对于我们拟建立好的分类模型应当只有局部的影响,并不应该影响所有的预测结果。原因正是开头提到的“形状”理论(我自己起的名字哈哈)。所以看起来,线性回归算法与我们想要创建的分类问题模型在逻辑上并不匹配。
萌新的一点点理解,希望能抛砖引玉~