关于为什么不可以将线性回归应用于分类问题的一点理解

博客探讨了回归问题与分类问题的底层逻辑差异。回归问题基于数据的趋势,而分类问题关注数据的形状。线性回归在处理分类问题时存在逻辑不匹配,因为新数据的加入会全局影响预测结果,而在分类模型中应只产生局部影响。作者以新手视角分享了这一理解。
摘要由CSDN通过智能技术生成

    首先讨论回归问题与分类问题的底层逻辑。对于回归问题来说,我们认为数据的出现具有某种“趋势。而对于分类问题来说,我们认为数据的出现具有某种“形状”。

    在回归问题中,正因为我们认为数据的出现具有某种“趋势”,所以采用了线性回归来生成一个函数去预测数据的出现。可若要将线性回归应用于分类问题上时,在给数据集添加新数据时会产生逻辑上的矛盾。

    由于线性回归生成出的函数为一次函数,当有新的数据添加至数据集时,会导致该函数变化,即会直接导致所有的预测结果整体变动。但是在建立分类问题模型时使用的算法不该有这样的效果。新数据加入后,对于我们拟建立好的分类模型应当只有局部的影响,并不应该影响所有的预测结果。原因正是开头提到的“形状”理论(我自己起的名字哈哈)。所以看起来,线性回归算法与我们想要创建的分类问题模型在逻辑上并不匹配。

    萌新的一点点理解,希望能抛砖引玉~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值