为什么不用线性回归解决分类问题

  1. 线性回归用来解决分类问题时,稳定性差。
    当样本分布比较复杂时,线性回归无法做到准确的分类。
    例如:
    (1)无异常值的线性回归情况:
    只要将阈值设定为0.5,就可以进行很好地分类。在这里插入图片描述
    (2)有异常值的线性回归情况:
    需要将阈值设定为0.2,才可以进行很好地分类。在这里插入图片描述
    (3) 逻辑回归对异常值具有很好地稳定性。在这里插入图片描述
    2. 线性回归的取值范围为负无穷到正无穷,逻辑回归的取值为0,1。
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页