Gauss-Seidel迭代求解线性方程组

高斯—赛德尔迭代法考试比较多,所以考虑再三,还是单独提取出来独立一篇,方便查阅,突出重点。

首先举例引入:

通过手动求解下面的线性方程组得到精确解:


再用高斯—赛德尔迭代法求解比较:


本人拙见,将每一步迭代出来的最新结果充分利用,正如上图所说,高斯—赛德尔迭代法认为最新计算出来的分量可能比旧的分量要好些。事实上是否如此,另当别论,这种思想也有其道理。

————————————————————————————————————————————————————

一般情况:

————————————————————————————————————————————————————

对于如下线性方程组:


经过变形得到如下形式(变形方程组):


根据上面的举例,可以得到下面的迭代公式:&

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李锐博恩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值