weight_decay
是一个在优化算法中常用的超参数,用于控制模型权重更新的正则化项。在训练神经网络时,通常使用梯度下降等优化算法来更新模型的权重,以最小化损失函数。weight_decay
通过在损失函数中添加一个正则化项,对模型的权重进行惩罚,以防止过拟合。
在优化算法中,weight_decay
的作用是通过在损失函数中添加一个项,使得较大的权重被抑制。这通常被称为 L2 正则化,其数学表达式如下:
损失函数(带 L2 正则化) = 原始损失函数 + 0.5 * weight_decay * Σ(参数值^2)
其中,Σ 表示对所有模型参数求和。weight_decay
控制了正则化的强度,较大的值会对权重的影响更大,从而对模型的复杂度进行惩罚。
import torch
import torch.optim as optim
# 定义模型和损失函数
model = ...
criterion = ...
# 定义优化器,并设置 weight_decay
optimizer = optim.SGD(model.parameters(), lr=0.01, weight_decay=0.0001)
# 训练过程中使用 optimizer 进行权重更新
for epoch in range(num_epochs):
for input_data, target in data_loader:
optimizer.zero_grad()
output = model(input_data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
weight_decay
在深度学习中有两个主要作用:
-
防止过拟合: 通过向损失函数添加正则化项,
weight_decay
对模型的权重进行惩罚,鼓励模型使用较小的权重。这有助于防止模型在训练集上过度拟合,即过度适应训练数据而在测试集上性能较差的现象。正则化通过限制模型的复杂度,使其更加健壮,能够更好地泛化到未见过的数据。 -
权重衰减: 在优化算法中,
weight_decay
可以被视为一种权重衰减的形式。在梯度下降更新权重的过程中,除了使用损失函数的负梯度,还会减去一个与权重成正比的值。这样做的效果是每次更新都会使权重向零的方向移动,从而实现对权重的衰减。这对于控制权重的增长,尤其是在训练深度神经网络时,是一种常见的策略。