超参数 learning rate,weight decay和momentum

本文介绍了深度学习中的三个重要超参数:学习率(Learning Rate)、权重衰减(Weight Decay)和动量(Momentum)。学习率决定权重更新速度,过大或过小都会影响模型收敛;权重衰减通过正则化防止过拟合,保持模型简洁;动量引入物理概念,加速模型在误差曲面上的收敛。同时,还提到了学习率衰减策略,以应对训练后期损失不再下降的问题。
摘要由CSDN通过智能技术生成

先看几个公式!

[公式]  ........ (1)

[公式]

[公式] ......(2)

[公式] .........(3)

超参数是指机器学习模型里面的框架参数,和训练过程中学习的参数(权重)不一样,超参数通常是手工设定,不断试错调整,或者对一系列穷举出来的参数组合一通进行枚举(网格搜索)。

深度学习和神经网络模型,有很多这样的参数需要学习。时至今日,非参数学习研究正在帮助深度学习更加自动的优化模型参数选择,当然有经验的专家仍然是必须的。

 


Learning Rate (gradient coefficient)

上面(1)式中的 [公式] 。
学习率决定了权值更新的速度,设置得太大会使结果超过最优值,太小会使下降速度过

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值