引言:量化交易建模最重要的一个方面是避免过度拟合。过度拟合是统计学和机器学习领域的概念,指的是模型在训练数据中拟合程度很好,但在测试数据中表现却不如人意。
一、过度拟合的影响
传统的机器学习问题,此类过度拟合的不会很明显。比如对于分类问题,一般训练集准确度99%,测试集即使过度拟合也有95%,这其实影响并不会很大。但是对于金融数据而言,由于数据的高噪音及时间序列特征,训练数据和测试数据往往会有较大差异,如果建模过程不是很严谨,很容易出现严重的过度拟合现象,结果就是样本内稳定赚钱的策略,到了样本外就稳定亏钱。
二、如何避免过度拟合
避免过度拟合的思想需要贯穿在量化建模的整个过程中,每一个步骤都需要遵循客观严谨的原则。一个好的量化交易建模体系,必须能较好地克服过度拟合的情况,使得量化研究人员按照整个研发流程走下来得到的策略,就能够很好地避免过度拟合。根据我们的经验,可以通过以下几点来实现:
1、保证一定的交易次数
对于商品期货策略,如果分品种进行回测,部分不活跃品种可能一年都没有20次交易,几年下来总的交易次数不到100次&#