如何避免量化交易策略模型过度拟

本文探讨了量化交易策略建模中的过度拟合问题及其影响,提出通过保证交易次数、平均利润,避免重复使用测试数据来避免过度拟合。同时,提高因子质量、优化筛选标准、增加策略多样性和考虑金融数据的时间序列特征是提高模型质量的关键。
摘要由CSDN通过智能技术生成

转 如何避免量化交易策略模型过度拟合

引言:量化交易建模最重要的一个方面是避免过度拟合。过度拟合是统计学和机器学习领域的概念,指的是模型在训练数据中拟合程度很好,但在测试数据中表现却不如人意。

一、过度拟合的影响

传统的机器学习问题,此类过度拟合的不会很明显。比如对于分类问题,一般训练集准确度99%,测试集即使过度拟合也有95%,这其实影响并不会很大。但是对于金融数据而言,由于数据的高噪音及时间序列特征,训练数据和测试数据往往会有较大差异,如果建模过程不是很严谨,很容易出现严重的过度拟合现象,结果就是样本内稳定赚钱的策略,到了样本外就稳定亏钱。

二、如何避免过度拟合

避免过度拟合的思想需要贯穿在量化建模的整个过程中,每一个步骤都需要遵循客观严谨的原则。一个好的量化交易建模体系,必须能较好地克服过度拟合的情况,使得量化研究人员按照整个研发流程走下来得到的策略,就能够很好地避免过度拟合。根据我们的经验,可以通过以下几点来实现:

1、保证一定的交易次数

对于商品期货策略,如果分品种进行回测,部分不活跃品种可能一年都没有20次交易,几年下来总的交易次数不到100次&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值