【BZOJ 1063】 [Noi2008]道路设计

1063: [Noi2008]道路设计

Time Limit: 20 Sec   Memory Limit: 162 MB
Submit: 691   Solved: 387
[ Submit][ Status]

Description

Z 国坐落于遥远而又神奇的东方半岛上,在小Z 的统治时代公路成为这里主要的交通手段。Z 国共有n 座城市,一些城市之间由双向的公路所连接。非常神奇的是Z 国的每个城市所处的经度都不相同,并且最多只和一个位于它东边的城市直接通过公路相连。Z 国的首都是Z 国政治经济文化旅游的中心,每天都有成千上万的人从Z 国的其他城市涌向首都。 为了使Z 国的交通更加便利顺畅,小Z 决定在Z 国的公路系统中确定若干条规划路线,将其中的公路全部改建为铁路。 我们定义每条规划路线为一个长度大于1 的城市序列,每个城市在该序列中最多出现一次,序列中相邻的城市之间由公路直接相连(待改建为铁路)。并且,每个城市最多只能出现在一条规划路线中,也就是说,任意两条规划路线不能有公共部分。 当然在一般情况下是不可能将所有的公路修建为铁路的,因此从有些城市出发去往首都依然需要通过乘坐长途汽车,而长途汽车只往返于公路连接的相邻的城市之间,因此从某个城市出发可能需要不断地换乘长途汽车和火车才能到达首都。 我们定义一个城市的“不便利值”为从它出发到首都需要乘坐的长途汽车的次数,而Z 国的交通系统的“不便利值”为所有城市的不便利值的最大值,很明显首都的“不便利值”为0。小Z 想知道如何确定规划路线修建铁路使得Z 国的交通系统的“不便利值”最小,以及有多少种不同的规划路线的选择方案使得“不便利值”达到最小。当然方案总数可能非常大,小Z 只关心这个天文数字mod Q 后的值。 注意:规划路线1-2-3 和规划路线3-2-1 是等价的,即将一条规划路线翻转依然认为是等价的。两个方案不同当且仅当其中一个方案中存在一条规划路线不属于另一个方案。

Input

第一行包含三个正整数N、M、Q,其中N 表示城市个数,M 表示公路总数,N 个城市从1~N 编号,其中编号为1 的是首都。Q 表示上文提到的设计路线的方法总数的模数。接下来M 行,每行两个不同的正数ai、bi (1≤ ai , bi ≤ N)表示有一条公路连接城市ai 和城市bi。 输入数据保证一条公路只出现一次。

Output

包含两行。第一行为一个整数,表示最小的“不便利值”。 第二行为一个整数,表示使“不便利值”达到最小时不同的设计路线的方法总数 mod Q 的值。如果某个城市无法到达首都,则输出两行-1。

Sample Input

5 4 100
1 2
4 5
1 3
4 1

Sample Output

1
10

HINT

以下样例中是10 种设计路线的方法: 

(1) 4-5 

(2) 1-4-5 

(3) 4-5, 1-2 

(4) 4-5, 1-3 

(5) 4-5, 2-1-3 

(6) 2-1-4-5 

(7) 3-1-4-5 

(8) 1-4 

(9) 2-1-4 

(10) 3-1-4 

【数据规模和约定】

对于100%的数据,满足1 ≤ N,M ≤ 100000,1 ≤ Q ≤ 120000000。


树形dp。


根据题目描述,容易发现图是一棵树。


f[i][j][k]表示第i个点及其子树的最大不便利值为j,i与儿子修k(k=0/1/2)条公路的方案数。


将狼踩尽的分析:



化简之前的dp很显然,化简之后的式子我认为有点像是滚雪球。。

依次扫描每一个儿子,把这个儿子对于f[i][j][k]的贡献加入;

最终儿子扫描完后,每一个儿子的贡献就都有了。


#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cstdlib>
#include <string>
#define M 200005
#define LL long long
using namespace std;
struct edge
{
	int y,ne;
}e[M];
int h[M],tot,n,m,v[M];
LL f[M][11][3],mod;
void Addedge(int x,int y)
{
	e[++tot].y=y;
	e[tot].ne=h[x];
	h[x]=tot;
}
LL Get(LL x)
{
	if (x&&x%mod==0) return mod;
	return x%mod;
}
void dfs(int x)
{
	v[x]=1;
	for (int i=0;i<=10;i++)
		f[x][i][0]=1LL;
	for (int i=h[x];i;i=e[i].ne)
	{
		int y=e[i].y;
		if (v[y]) continue;
		dfs(y);
		for (int j=0;j<=10;j++)
		{
			LL f1=0,f2=0;
			f1=f[y][j][0]+f[y][j][1];
			if (j)
				f2=f[y][j-1][0]+f[y][j-1][1]+f[y][j-1][2];
			f[x][j][2]=Get(f[x][j][2]*f2+f[x][j][1]*f1);
			f[x][j][1]=Get(f[x][j][1]*f2+f[x][j][0]*f1);
			f[x][j][0]=Get(f[x][j][0]*f2);
		}
	}
}
int main()
{
        scanf("%d%d%lld",&n,&m,&mod);
	for (int i=1;i<=m;i++)
	{
		int x,y;
		scanf("%d%d",&x,&y);
		Addedge(x,y),Addedge(y,x);
	}
	if (m!=n-1)
	{
		puts("-1"),puts("-1");
		return 0;
	}
	dfs(1);
	for (int i=0;i<=10;i++)
		if (f[1][i][0]+f[1][i][1]+f[1][i][2]>0)
		{
			printf("%d\n",i);
			printf("%lld\n",(f[1][i][0]+f[1][i][1]+f[1][i][2])%mod);
			return 0;
		}
	puts("-1"),puts("-1");
	return 0;
}



感悟:

1.注意如果f[][][]非0且%mod=0,不能取0,而要取mod,因为输出的时候要判断是否为0。


2.把原式化简成线性的式子感觉超级巧妙~值得借鉴。

题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值