1. LLM 代理的定义与背景
1.1 定义
LLM 代理是一种基于大型语言模型(如 GPT-4、Claude、Llama)的智能系统,能够自主完成复杂任务,超越传统 LLM 的文本生成能力。它们通过推理、规划、记忆和工具使用,与外部环境交互,执行多步骤任务。例如,一个 LLM 代理可以被要求“为一个四口之家规划巴黎旅行”,它会分解任务(查找航班、预订酒店、推荐景点)、调用工具(如旅行 API)、利用记忆(用户偏好)并生成详细计划。
1.2 背景与发展
- 起源:LLM 代理的概念源于 LLM 的强大语言理解能力与传统 AI 代理(Agent)理论的结合。传统 AI 代理(如强化学习代理)依赖明确定义的状态和动作空间,而 LLM 代理利用自然语言处理(NLP)的通用性,适应开放域任务。
- 推动因素:
- LLM 能力提升:如 GPT-4o、Claude 3.5、Gemini 1.5 Pro 的上下文窗口扩展(128k 到 2M+ 标记)和推理能力增强。
- 工具集成:框架如 LangChain 和 Llama Index 使 LLM 能调用外部 API、数据库等。
- 开源生态:Hugging Face、Llama 等开源模型降低了开发门槛。
- 里程碑:
- 2022 年:ReAct 框架(Reasoning + Acting)提出,结合推理与行动。
- 2023 年:AutoGPT 和 BabyAGI 展示了自主任务分解和执行。
- 2024-2025 年:多代理系统和多模态代理成为研究热点。
1.3 LLM 代理与传统 LLM 的区别
特性 | 传统 LLM | LLM 代理 |
---|---|---|
功能 | 文本生成、问答、翻译 | 任务规划、工具使用、自主决策 |
交互性 | 被动响应用户输入 | 主动分解任务、与环境交互 |
上下文管理 | 依赖当前对话上下文 | 结合短期和长期记忆,动态调整 |
应用场景 | 聊天、内容创作 | 复杂任务(如旅行规划、法律分析) |
2. LLM 代理的核心组件
LLM 代理的架构由以下四个核心组件组成,共同实现其自主性和智能性:
2.1 代理/大脑(Agent/Brain)
- 定义:LLM 本身(如 GPT-4、Llama)作为核心推理引擎,处理语言输入、生成响应并协调其他组件。
- 功能:
- 理解用户指令,解析复杂查询。
- 通过提示工程(如角色扮演)定制行为,例如扮演“财务顾问”或“法律专家”。
- 技术:
- 提示工程:如链式思维(Chain-of-Thought, CoT)提示,引导模型逐步推理。
- 角色扮演:通过预定义角色(如 GitHub 角色扮演示例)增强任务适应性。
- 示例:用户要求“分析加州合同违约的法律后果”,代理通过提示(如“以法律专家身份分析”)调用 LLM 生成专业响应。
2.2 记忆(Memory)
- 定义:用于存储和检索上下文信息,分为短期记忆和长期记忆。
- 类型:
- 短期记忆:类似便签,存储当前对话或任务的上下文,任务结束后清除。例如,记录用户在对话中提到的预算限制。
- 长期记忆:类似日记,跨会话存储用户偏好、历史交互或任务模式。例如,记住用户偏好低成本旅行。
- 技术:
- 检索增强生成(RAG):从外部知识库或历史记录中检索相关信息,确保响应准确(详见 RAG 技术概述)。
- 向量数据库:如 Pinecone、Weaviate,用于高效存储和检索嵌入式上下文。
- 示例:在旅行规划中,代理通过 RAG 检索用户之前的偏好(如“喜欢博物馆”),并结合当前对话调整建议。
2.3 规划(Planning)
- 定义:将复杂任务分解为可管理的子任务,并动态调整计划以应对变化。
- 阶段:
- 计划制定:分解任务为步骤,例如:
- 链式思维(CoT):逐步推理,详见 CoT 提示。
- 思维树(ToT):探索多个推理路径,类似搜索树(ToT GitHub)。
- 层次决策树:为复杂任务构建多级计划。
- 计划反思:评估中间结果,调整策略:
- ReAct:结合推理和行动,动态调用工具(ReAct 论文)。
- Reflexion:通过自我反馈改进计划(Reflexion 论文)。
- 计划制定:分解任务为步骤,例如:
- 示例:规划巴黎旅行时,代理先列出子任务(航班、酒店、景点),然后根据预算变化(通过 Reflexion)调整为更经济的酒店。