无偏估计 与 方差缩小 (非常详细版)

1. 无偏估计

1.1 核心概念与定义

无偏估计是统计学中点估计的一个核心属性,旨在确保估计量在长期平均意义下不会系统性地偏离真实参数值。

数学定义
θ \theta θ 为总体参数(如均值 μ \mu μ、方差 σ 2 \sigma^2 σ2、或回归系数 β \beta β), θ ^ \hat{\theta} θ^ 为基于样本的估计量。一个估计量 θ ^ \hat{\theta} θ^ θ \theta θ 的无偏估计量,当且仅当 E [ θ ^ ] = θ E[\hat{\theta}] = \theta E[θ^]=θ,其中 E [ θ ^ ] E[\hat{\theta}] E[θ^] θ ^ \hat{\theta} θ^ 的期望值,基于样本的概率分布计算。

直观解释

  • 无偏性意味着,如果你从同一总体中反复抽样并计算 θ ^ \hat{\theta} θ^,这些估计值的平均值会趋向于真实参数 θ \theta θ
  • 例如,样本均值 X ˉ \bar{X} Xˉ 是总体均值 μ \mu μ 的无偏估计量,意味着无论样本大小如何, X ˉ \bar{X} Xˉ 的期望总是 μ \mu μ

偏差
偏差定义为 Bias ( θ ^ ) = E [ θ ^ ] − θ \text{Bias}(\hat{\theta}) = E[\hat{\theta}] - \theta Bias(θ^)=E[θ^]θ。无偏估计量满足 Bias ( θ ^ ) = 0 \text{Bias}(\hat{\theta}) = 0 Bias(θ^)=0

1.2 为什么需要无偏估计?

  • 统计推断的基础:无偏估计量是构建置信区间、假设检验等统计方法的基础。例如,置信区间的中心点通常是无偏估计量。
  • 理论保证:无偏性提供了一个“公平”的估计标准,避免系统性误差。
  • 可验证性:在理论分析中,无偏估计量的性质更容易推导和验证。

1.3 常见无偏估计量的推导与性质

以下详细推导几个经典的无偏估计量,展示其数学性质。

1.3.1 样本均值估计总体均值

场景
假设从总体中抽取 n n n 个独立同分布 (i.i.d.) 的样本 X 1 , X 2 , … , X n X_1, X_2, \dots, X_n X1,X2,,Xn,总体均值为 μ = E [ X i ] \mu = E[X_i] μ=E[Xi],方差为 σ 2 = Var ( X i ) \sigma^2 = \text{Var}(X_i) σ2=Var(Xi)

估计量
样本均值为 X ˉ = 1 n ∑ i = 1 n X i \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i Xˉ=n1i=1nXi

无偏性证明
E [ X ˉ ] = E [ 1 n ∑ i = 1 n X i ] = 1 n ∑ i = 1 n E [ X i ] = 1 n ⋅ n μ = μ E[\bar{X}] = E\left[\frac{1}{n} \sum_{i=1}^n X_i\right] = \frac{1}{n} \sum_{i=1}^n E[X_i] = \frac{1}{n} \cdot n \mu = \mu E[Xˉ]=E[n1i=1nXi]=n1i=1nE[Xi]=n1nμ=μ
因此, X ˉ \bar{X} Xˉ μ \mu μ 的无偏估计量。

方差
Var ( X ˉ ) = Var ( 1 n ∑ i = 1 n X i ) = 1 n 2 ∑ i = 1 n Var ( X i ) = 1 n 2 ⋅ n σ 2 = σ 2 n \text{Var}(\bar{X}) = \text{Var}\left(\frac{1}{n} \sum_{i=1}^n X_i\right) = \frac{1}{n^2} \sum_{i=1}^n \text{Var}(X_i) = \frac{1}{n^2} \cdot n \sigma^2 = \frac{\sigma^2}{n} Var(Xˉ)=Var(n1i=1nXi)=n21i=1nVar(Xi)=n21nσ2=nσ2
样本均值的方差随样本量 n n n 增加而减小,表明其稳定性提高。

1.3.2 样本方差估计总体方差

场景
继续假设样本 X 1 , X 2 , … , X n X_1, X_2, \dots, X_n X1,X2,,Xn,总体方差为 σ 2 = E [ ( X i − μ ) 2 ] \sigma^2 = E[(X_i - \mu)^2] σ2=E[(Xiμ)2]

估计量
样本方差定义为 S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2 S2=n11i=1n(XiXˉ)2,注意分母是 n − 1 n-1 n1,这是为了确保无偏性。

无偏性证明
要证明 E [ S 2 ] = σ 2 E[S^2] = \sigma^2 E[S2]=σ2,我们需要计算:
E [ S 2 ] = E [ 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 ] E[S^2] = E\left[\frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2\right] E[S2]=E[n11i=1n(XiXˉ)2]
首先,展开平方项:
∑ i = 1 n ( X i − X ˉ ) 2 = ∑ i = 1 n ( X i − μ − ( X ˉ − μ ) ) 2 = ∑ i = 1 n ( X i − μ ) 2 − n ( X ˉ − μ ) 2 \sum_{i=1}^n (X_i - \bar{X})^2 = \sum_{i=1}^n (X_i - \mu - (\bar{X} - \mu))^2 = \sum_{i=1}^n (X_i - \mu)^2 - n (\bar{X} - \mu)^2 i=1n(XiXˉ)2=i=1n(Xiμ(Xˉμ))2=i=1n(Xiμ)2n(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱看烟花的码农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值