降低方差的统计方法详解其一:平均值估计法

文章介绍了无偏估计和平均值估计的方法,重点讨论了方差作为衡量估计准确性的标准,以及如何通过随机投点法和平均值估计法估计定积分。平均值估计法因其方差减小特性,相比随机投点法更为可靠。文中给出了Python和R语言的代码示例,展示了实际应用中的重要抽样策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

§1.问题引入

速成直接看§2.1 §3.1

§1.1 评判估计的好坏标准的解释

        对于一个无偏或者渐近无偏估计,我们给出统一的渐判标准--估计量的方差,方差的本身就是用来描述数据集的离散程度,对于离散程度大的,方差就大,对于离散程度小的,方差自然就小.什么是估计量的方差呢?

        举个例子,我们去估计一个抛硬币(硬币均匀)出现正反面的概率,规定实验次数100次(实验次数要一定,不然没有可比性,自然是次数越多越准),得到了容量为100的样本,现在估计出现正面的概率,我们用频率来表示概率,构造一个估计量:

                                                      

        n=100,NA表示正面出现的次数,根据常识,估计的p值肯定不是0.5,会有一点距离,我们重复上面的实验10次,得到更多的估计值p1,p2,p3....p10,那么估计量的方差的估计值就是这10个数的方差.

注意:这里计算方差的均值就是这10个数的均值

总的来说:方差是用来形容数据集的离散程度的,如果由估计量形成的数据集方差很小,那么重新产生的估计量数就会更有可能在数据集的均值附近,估计量形成的数据集的均值收敛到准确值

以下是投掷100次硬币,用频率估计概率的实验模拟示意图

x表示第几次实验,y表示这次实验的估计值,可以看到,每次实验的估计都会有一定的偏差,这个偏差的方差计算为:0.0020760000000000006,方差较小,故每次估计与准确值的偏差不会很大

注意:估计值的方差只和实验次数和估计量的构造有关, 正如本文中的之和n有关,与m无关,当m很大时,估计值的方差会收敛到一个定值,后面还会提及

§1.2 例:随机投点法估计定积分

        用随机投点法估计以下定积分,采用样本量为n=1000的投法估计,得到估计值,重复m=100次,计算所得估计值的方差

                                                  

在矩形区域内随机投点,用投中的点的比例代替积分区域与矩形面积比

   

注:积分准确值为2

在python中,投1000个点的实验,重复100次所得到的估计值为:

1.9964821313563132

方差为

0.0021344993438235983

下面将正式介绍平均值估计法,并在同样是1000个样本且重复10次的情况下计算对于两种方法的效果

§2.平均值估计法的详细介绍

§2.1平均值估计的用法

在计算积分\int_{a}^{b}f(x)dx

1.生成[a,b]上的一组等概率的随机数x_1,x_2,x_3......x_n

2.分别计算,

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值