媒体评出十个最具吸引力的电商类创业公司

第十名:【Shopmium】促销营销广告平台。Shopmium应用实际上充当着广告平台的角色,让品牌商可以在上面向选择关注新产品的用户受众展开富媒体营销活动。对于消费者来说,除了精准的产品发现之外,Shopmium还能够让他们在浏览广告后获得优惠券。 http://t.cn/zHOE7eV  

第九名:【Coolspotters】名人服装饰品资讯。CoolSpotters:名人服装饰品资讯网是美国一个专门介绍名人服装饰品资讯的网站,以明星的照片(或者视频)切入,让产品更加生动。明星和时尚的关系是分不开的,明星们走在时尚的前端,是时尚的标杆。 http://t.cn/zHyxdVm

第八名:【Affinity】社交网络营销。Affinity利用社交网络的影响力,让名人偶像和消费者互动。消费者可以通过购买自己偶像推荐的物品而获得奖励,奖励包括积分、偶像的一段录音、签名照、Twitter互相关注等等。零售商可以通过Affinity平台将自己直接展示到消费者面前,通过名人的推荐而获得客户的忠诚度,当然零售商是需要付展示费的。 http://t.cn/zHzeNLA  

第七名:【Buycott】商品背后的故事。通过Buycott扫描条形码,你可以知道某产品背后的母公司,从而有效的防止了购买与自己意愿不符的产品。比如扫描一瓶 Ethos 矿泉水,这个 app 会告诉你它属于星巴克。如果扫描了一瓶 Honest Tea,就能知道它来自可口可乐公司。Buycott 会提供相关的公司的电话,Facebook 和 Twitter 主页,同时也会告诉消费者这个公司的“产品家族树“。总而言之,一些看似独立的品牌,背后其实都是大型公司的子公司,这款 app 可以帮消费者发现这点。 http://t.cn/zHkHUFO  

第六名:【Payhip】向你的粉丝销售电子书。将你的电子书便捷的卖给你的粉丝,是一个C2C的电商网站。利用Payhip你只需要将自己写的电子书上传,然后将链接在Twitter、Facebook等任意地方公布,你的粉丝就可以方便的购买了。 http://t.cn/zHkHUF0  

第五名:【MobiZebra】商品差优点评。MobiZebra提供一个便捷的商品点评服务,运行在移动手机上的APP应用。你可以通过二维码扫描查看一个商品的好评率,有多少人喜欢、感觉一般、不喜欢。还可以贡献自己的点评和评价。 http://t.cn/zH1nBcQ  

第四名:【Olapic】基于图片营销平台。Olapic允许品牌商收集来自Facebook、Instagram、Twitter等服务的用户生成图片,并将它们显示在其网站上。Olapic目前还提供分析套件让零售商和品牌商了解所展示内容的作用及其对转化率的影响。 http://t.cn/zHfFAcg  

第三名:【Curebit】线下购物推荐平台。Curebit计划帮助零售商将线下业务与线上业务整合起来。 http://t.cn/zHptMly  

第二名:【Wishareit】送礼送到心坎里。Wishareit帮助送礼物的人和接受礼物的人都满意。如果你经常为送礼而发愁,不知道该送给朋友或者亲人什么礼物,或者为收到不喜欢的礼物而郁闷,那Wishareit这个产品真的解决了你的难题。 http://t.cn/zHlL6qr  

第一名:【BabyList】初生婴儿用品购物清单。BabyList提供一个便捷的初生婴儿用品清单管理服务。你可以将任何购物网站上的物品放到清单里,还可以便捷的和亲友分享你的清单列表,这样他们就可以看到你的新生婴儿需要什么玩具、尿不湿、童车等等。 http://t.cn/zHe3PSS
### 电商评论的情景分方法 对于电商评论的情景分,主要依据评论的情感倾向以及体内容来进行划分。体来说: - **正向情感分析**:针对正面评价,尤其是那些有较高情感系数且篇幅较长的评论文本被定义为“深度好评”。这些评论往往能够提供关于产品体验的体细节和深入描述[^2]。 - **负向情感分析**:相反地,当识别到带有强烈负面情绪并且内容丰富的评论时,则将其标记为“深度差评”。此反馈有助于商家及时发现并解决潜在的产品或服务问题。 #### 实现方式 为了实现上述情景分,可以采用自然语言处理技术来解析每条评论的情绪色彩及其语义特征。以下是Python代码片段展示如何利用预训练模型进行简单的二元情感分(正面 vs 蝉联): ```python from transformers import pipeline classifier = pipeline('sentiment-analysis') comments = ["这款手机真的很好用", "这个产品质量太差了"] results = classifier(comments) for result in results: print(f"label: {result['label']}, score: {round(result['score'], 4)}") ``` 此段代码使用Hugging Face提供的`transformers`库中的pipeline工加载了一个预先训练好的BERT模型用于执行情感分析任务,并输出给定样本集里各条记录对应标签及置信度得分。 ### 应用场景 1. **优化用户体验** - 将优质的好评为重点推荐至首页或其他显著位置,使更多消费者快速获得有价值的信息;同时,通过展示真实用户的良好购物经历增强信任感。 2. **辅助决策支持** - 对于内部团队而言,“深度差评”的存在提醒着需要改进的地方——无论是产品质量还是客户服务方面的问题都可以借此机会得到重视与改善。 3. **自动化营销策略制定** - 结合用户画像和其他行为数据,基于不同型的客户群体推送个性化的促销活动或者新品预告等内容,提高转化率的同时也增加了品牌忠诚度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值