自适应控制-控制器设计部分-Part2

自适应控制

14-基于Lyapunov稳定性理论设计模型参考自适应控制器

一、相关的稳定性理论
  1. 平衡点:无外力作用于系统时,系统将保持不变;

  2. 稳定: ∥ x ( t ; x 0 , t 0 ) − x e ∥ < ϵ \left\| x(t;x_0,t_0)-x_e \right\| < \epsilon x(t;x0,t0)xe<ϵ

    一致稳定:

    渐进稳定: ( 1 ) x e 为稳定点; ( 2 )若初始状态满足 ∥ x 0 − x e ∥ < δ ( t 0 ) ,就有 lim ⁡ t → ∞ ∥ x ( t ; x 0 , t 0 ) − x e ∥ = 0 (1)x_e为稳定点;(2)若初始状态满足\left\| x_0-x_e \right\|<\delta(t_0),就有\lim_{t\rightarrow \infin}\left\| x(t;x_0,t_0)-x_e \right\|=0 (1)xe为稳定点;(2)若初始状态满足x0xe<δ(t0),就有limtx(t;x0,t0)xe=0

    一致渐近稳定:

  3. Figure:

    ACmd-14-01
  4. 几个经典的结论

    1. 正定函数和半正定函数的定义

      ​ 一个连续可微的函数 V : R n → R V:R^n \rightarrow R V:RnR ,在包含原点“ 0 0 0 ”的区域: U ∈ R n U \in R^n URn 内被称为是正定的,如果以下两个条件成立:
      V ( 0 ) = 0    ;    V ( x ) > 0 , x ∈ U 且 x ≠ 0 V(0)=0 \ \ ;\ \ V(x)>0,x \in U 且 x \neq 0 V(0)=0  ;  V(x)>0,xUx=0
      以上函数被称为是半正定的,如果 V ( x ) > 0 V(x)>0 V(x)>0 被替换为 V ( x ) ≥ 0 V(x) \geq 0 V(x)0

    2. 时不变系统(Time Invariant Systems)的稳定性理论

      ​ 对用如下状态方程描述的动力学系统:
      X ˙ = f ( X ) \dot X=f(X) X˙=f(X)
      X = 0 X=0 X=0 是以上系统的一个平衡点,即 f ( 0 ) = 0 f(0)=0 f(0)=0 ,如果存在包含此平衡点的集合 D ⊂ R n D \subset R^n DRn 以及在此集合上定义的具有以下条件的连续可微函数:
      V : D → R V ( 0 ) = 0 且 V ( X ) > 0 , X ∈ D − { 0 } V:D \rightarrow R \\ V(0)=0 且 V(X)>0,X \in D-\{0\} V:DRV(0)=0V(X)>0,XD{0}
      在此基础上,如果沿以上方程轨线的
      V ˙ ( X ) = ∂ V T ∂ x d x d t = ∂ V T ∂ x f ( x ) = − W ( x ) ≤ 0 , X ∈ D \dot V(X) =\frac{\partial V^T}{\partial x} \frac{\rm dx}{\rm dt} =\frac{\partial V^T}{\partial x}f(x) =-W(x) \leq 0,X \in D V˙(X)=xVTdtdx=xVTf(x)=W(x)0,XD
      平衡点 x ( t ) = 0 x(t)=0 x(t)=0 稳定

      ​ 如果进一步有:
      V ˙ ( X ) < 0 , X ∈ D − 0 \dot V(X)<0,X \in D-{0} V˙(X)<0,XD0
      平衡点 x ( t ) = 0 x(t)=0 x(t)=0 渐进稳定

      ​ 如果进一步有:
      V ˙ ( X ) < 0 ,并且当 ∥ x ∥ → ∞ 时, V ( X ) → ∞ \dot V(X)<0,并且当 \left\| x \right\| \rightarrow \infin 时,V(X) \rightarrow \infin V˙(X)<0,并且当x时,V(X)
      平衡点 x ( t ) = 0 x(t)=0 x(t)=0 全局渐进稳定

    3. 时变系统的稳定性定理

      1. K 类函数的定义:

        ​ 连续函数 α : [ 0 , a ) → [ 0 , ∞ ) \alpha:[0,a) \rightarrow [0,\infin) α:[0,a)[0,) 被称为是属于 K 类函数,如果它严格递增(Strictly Increasing)且 α ( 0 ) = 0 \alpha(0)=0 α(0)=0

      2. 定理:

        ​ 对用如下状态方程描述的动力学系统
        X ˙ = f ( X , t ) \dot X=f(X,t) X˙=f(X,t)
        X = 0 X=0 X=0 是以上系统的平衡点,即 f ( 0 , t ) = 0 f(0,t)=0 f(0,t)=0 ,以及:
        D = { x ∈ R n , ∥ x ∥ < r } D=\{ x \in R^n,\left\| x \right\| <r \} D={xRn,x<r}
        如果存在一个连续可微的函数 V V V ,满足
        α 1 ( ∥ x ∥ ) ≤ V ( x , t ) ≤ α 2 ( ∥ x ∥ ) d V d t = ∂ V ∂ t + ∂ V T ∂ t f ( x , t ) ≤ 0 , ∀ t ≥ 0 \alpha_1(\|x\|) \leq V(x,t) \leq \alpha_2(\|x\|) \\ \frac{\rm dV}{\rm dt} = \frac{\partial V}{\partial t} + \frac{\partial V^T}{\partial t}f(x,t) \leq 0, \forall t \geq 0 α1(x)V(x,t)α2(x)dtdV=tV+tVTf(x,t)0,t0
        其中, α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α1,α2,α3 为 K 类函数,则平衡点 x ( t ) = 0 x(t)=0 x(t)=0 一致稳定

    4. 有界收敛集定理

      ​ 对用如下状态方程描述的动力学系统
      X ˙ = f ( X , t ) \dot X=f(X,t) X˙=f(X,t)
      D = { x ∈ R n , ∥ x ∥ < r } D=\{ x \in R^n,\| x \|<r \} D={xRn,x<r} ,并假设 f ( X , t ) f(X,t) f(X,t) D × [ 0 , ∞ ) D \times [0,\infin) D×[0,) 上满足 Lipschitz 条件。如果存在一个连续可微的函数 V V V ,满足
      α 1 ( ∥ x ∥ ) ≤ V ( x , t ) ≤ α 2 ( ∥ x ∥ ) \alpha_1(\| x \|) \leq V(x,t) \leq \alpha_2(\| x \|) α1(x)V(x,t)α2(x)
      并且
      d V d t = ∂ V ∂ t + ∂ V T ∂ x f ( x , t ) ≤ − W ( x ) ≤ 0 , ∀ t ≥ 0 , ∀ x ∈ D \frac{\rm dV}{\rm dt} =\frac{\partial V}{\partial t}+\frac{\partial V^T}{\partial x}f(x,t) \leq -W(x) \leq 0, \forall t \geq 0,\forall x \in D dtdV=tV+xVTf(x,t)W(x)0,t0,xD
      其中, α 1 , α 2 \alpha_1,\alpha_2 α1,α2 为定义在 [ 0 , ∞ ) [0,\infin) [0,) 上的 K 类函数,并且 W ( x ) W(x) W(x) D D D 上连续。

      ​ 进一步,如果 d V d t \frac{\rm dV}{\rm dt} dtdV 关于时间 t t t 一致连续,则对于满足不等式
      ∥ x ( t 0 ) ∥ < α 2 − 1 ( α 1 ( r ) ) \| x(t_0) \| < \alpha_2^{-1} (\alpha_1(r)) x(t0)<α21(α1(r))
      的初值的方程 X ˙ = f ( X , t ) \dot X=f(X,t) X˙=f(X,t) 所有的解都有界,并且有
      W ( x ( t ) ) → 0 , t → ∞ W(x(t)) \rightarrow 0,t \rightarrow \infin W(x(t))0,t

      1. 定理说明系统所有的状态都有将有界,并且趋于集合 { x ∈ D ∣ W ( x ) = 0 } \{ x \in D | W(x)=0 \} {xDW(x)=0}
      2. 定理要求如果 d V d t \frac{\rm dV}{\rm dt} dtdV 关于时间 t t t 一致连续,而关于这一点的一个充分条件是 V ¨ \ddot V V¨ 有界。
    5. Kalman-Yakubovich 引理

      1. 正实传递函数(Positive Real Transfer Function)的定义

        ​ 称带实系数有理传递函数 G G G 为正实的,如果:
        R e ( G ( s ) ) ≥ 0 , R e ( s ) ≥ 0 \rm{Re}(G(s)) \geq 0,\rm{Re} (s) \geq 0 Re(G(s))0,Re(s)0
        称传递函数 G G G 为严格正实的,如果存在 ε > 0 \varepsilon >0 ε>0 使得 G ( s − ε ) G(s-\varepsilon) G(sε) 是正实的。

      2. 正实性质(PR)的条件:

        ​ 一个带实系数有理传递函数 G G G 为正实的,当且仅当满足以下条件时成立:

        1. 该函数在右半平面没有极点(开右半平面);
        2. 如果函数在虚轴上或在无穷大上有极点,它们都是具有正残差的简单极点;
        3. G ( s ) G(s) G(s) 的实部沿着 i ω i\omega 轴是非负的,即 R e ( G ( i ω ) ) ≥ 0 \rm{Re}(G(i\omega)) \geq 0 Re(G(iω))0
      3. 严格正实(SPR)的条件:

        1. 该函数在闭右半复平面上没有极点;
        2. 沿虚轴 i ω i\omega ,有 R e ( G ( i ω ) ) > 0 \rm{Re}(G(i\omega)) > 0 Re(G(iω))>0 。(注:并没有要求 ω → ∞ \omega \rightarrow \infin ω 时, R e ( G ( i ω ) ) > 0 \rm{Re}(G(i\omega))>0 Re(G(iω))>0
      4. 严格正实的性质:

        1. 频域:传递函数的 Nyquist 图处于一、四象限内(闭右复平面);(注:并非说 Nyquist 图处于一、四象限一定是严格正实的)
        2. 时域:传递函数的相对阶为 0 o r ± 1 0 or \pm 1 0or±1 ;(相对阶: D e g ( d ) − D e g ( n ) Deg(d)-Deg(n) Deg(d)Deg(n)
        3. 如果 G ( s ) G(s) G(s) 为 PR(SPR),则 1 / G ( s ) 1/G(s) 1/G(s) 也为 PR(SPR)。
      5. Kalman-Yakubovich引理

        ​ 设线性定常系统
        X ˙ = A X + B U Y = C X \dot X=AX+BU \\ Y=CX X˙=AX+BUY=CX
        完全可控、可观测,则传递函数
        G ( s ) = C ( s I − A ) − 1 B G(s)=C(sI-A)^{-1}B G(s)=C(sIA)1B
        严格正实的充要条件是存在正定矩阵 P , Q P,Q P,Q 使得:
        A T P + P A = − Q B T P = C A^TP+PA=-Q \\ B^TP=C ATP+PA=QBTP=C

二、设计实例
  1. 例1

    1. 参考模型:
      d y m d t = − a m y m + b m u c \frac{\rm dy_m}{\rm dt} =-a_my_m+b_mu_c dtdym=amym+bmuc
      被控对象:
      d y d t = − a y + b u \frac{\rm dy}{\rm dt} = -ay+bu dtdy=ay+bu
      其中, a , b a,b a,b 为未知的常数,其中 b b b 的符号要求已知。

    2. 选择自适应律: u ( t ) = θ 1 u c ( t ) − θ 2 y ( t ) u(t)=\theta_1u_c(t)-\theta_2y(t) u(t)=θ1uc(t)θ2y(t)

    3. 设计过程:
      S 1 : 引入误差 e = y − y m ⟶ y m = y − e S 2 : 对误差求导 d e d t = d y d t − d y m d t = − a y + b u − ( − a m y m + b m u c ) = − a y + b ( θ 1 u c − θ 2 y ) + a m ( y − e ) − b m u c = − a m e − ( b θ 2 + a − a m ) y + b ( θ 1 − b m ) u c S 3 : 简记 { θ 1 ′ = b θ 1 − b m θ 2 ′ = b θ 2 + a − a m ,有 d e d t = − a m e − ( b θ 2 ′ ) y + b ( θ 1 ′ ) u c S 4 : 取能量函数 V ( e , θ 1 ′ , θ 2 ′ ) = 1 2 [ e 2 + 1 b γ ( θ 2 ′ ) 2 + 1 b γ ( θ 1 ′ ) 2 ] S 5 : 对能量函数求导数 d V d t = e ⋅ d e d t + 1 b γ θ 2 ′ d θ 2 ′ d t + 1 b γ θ 1 ′ d θ 1 ′ d t = − a m e 2 + θ 2 ′ ( θ ˙ 2 ′ b γ − y e ) + θ 1 ′ ( θ ˙ 1 ′ b γ + u c e ) S 6 : 令 { θ ˙ 2 ′ b γ − y e = 0 → θ ˙ 2 ′ = b γ y e θ ˙ 1 ′ b γ − u c e = 0 → θ ˙ 1 ′ = b γ u c e S 7 : d 2 V d t 2 = − 2 a m e ⋅ d e d t = − 2 a m e ( − a m e − θ 2 ′ y + θ 1 ′ u c ) \begin{align} S1 :& 引入误差\\ &e =y-y_m \longrightarrow y_m = y-e \\ S2 :& 对误差求导\\ &\frac{\rm de}{\rm dt} = \frac{\rm dy}{\rm dt}-\frac{\rm dy_m}{\rm dt} \\ &= -ay+bu - (-a_my_m+b_mu_c) \\ &= -ay+b(\theta_1 u_c -\theta_2 y)+a_m(y-e)-b_mu_c \\ &=-a_me -(b\theta_2+a-a_m)y +b(\theta_1-b_m)u_c \\ S3 :& 简记 \left\{ \begin{array}{l} \theta_1' = b\theta_1-b_m \\ \theta_2' =b\theta_2+a-a_m \end{array} \right. ,有\frac{\rm de}{\rm dt}=-a_me -(b\theta_2')y +b(\theta_1')u_c \\ S4 :& 取能量函数\\ &V(e,\theta_1',\theta_2')=\frac{1}{2}\left[ e^2+\frac{1}{b \gamma}(\theta_2')^2+\frac{1}{b\gamma}(\theta_1')^2 \right] \\ S5 :& 对能量函数求导数 \\ &\frac{\rm dV}{\rm dt} = e\cdot \frac{\rm de}{\rm dt}+\frac{1}{b \gamma}\theta_2'\frac{\rm d\theta_2'}{dt}+\frac{1}{b \gamma}\theta_1'\frac{\rm d\theta_1'}{dt} \\ &= -a_me^2 +\theta_2'(\frac{\dot \theta_2'}{b\gamma}-ye) +\theta_1'(\frac{\dot \theta_1'}{b\gamma}+u_ce) \\ S6 :& 令 \left\{ \begin{array}{l} \frac{\dot \theta_2'}{b\gamma}-ye=0 \rightarrow \dot \theta_2'=b\gamma ye \\ \frac{\dot \theta_1'}{b\gamma}-u_ce=0 \rightarrow \dot \theta_1'=b\gamma u_ce \end{array} \right. \\ S7 :& \frac{\rm d^2V}{\rm dt^2} =-2a_me \cdot \frac{\rm de}{dt} \\ &=-2a_me(-a_me-\theta_2'y+\theta_1'u_c) \end{align} S1:S2:S3:S4:S5:S6:S7:引入误差e=yymym=ye对误差求导dtde=dtdydtdym=ay+bu(amym+bmuc)=ay+b(θ1ucθ2y)+am(ye)bmuc=ame(bθ2+aam)y+b(θ1bm)uc简记{θ1=bθ1bmθ2=bθ2+aam,有dtde=ame(bθ2)y+b(θ1)uc取能量函数V(e,θ1,θ2)=21[e2+1(θ2)2+1(θ1)2]对能量函数求导数dtdV=edtde+1θ2dtdθ2+1θ1dtdθ1=ame2+θ2(θ˙2ye)+θ1(θ˙1+uce){θ˙2ye=0θ˙2=yeθ˙1uce=0θ˙1=ucedt2d2V=2amedtde=2ame(ameθ2y+θ1uc)

    4. 参数调整律与控制律形式如下:
      d θ 1 d t = θ ˙ 1 ′ b = − γ u c e d θ 2 d t = θ ˙ 2 ′ b = − γ y e u ( t ) = − γ u c e s u c ( t ) − − γ y e s y ( t ) \frac{\rm d\theta_1}{\rm dt} = \frac{\dot \theta_1'}{b} = -\gamma u_ce \\ \frac{\rm d\theta_2}{\rm dt} = \frac{\dot \theta_2'}{b} = -\gamma ye \\ u(t) = \frac{-\gamma u_ce}{s}u_c(t)-\frac{-\gamma ye}{s}y(t) dtdθ1=bθ˙1=γucedtdθ2=bθ˙2=γyeu(t)=sγuceuc(t)sγyey(t)

    5. Figure:

      ACmd-14-02
  2. 例2

    1. 以状态空间形式描述的系统:
      d x m d t = A m x m + B m u c d x d t = A x + B u \frac{\rm dx_m}{\rm dt}=A_mx_m+B_mu_c \\ \frac{\rm dx}{\rm dt} =Ax+Bu dtdxm=Amxm+Bmucdtdx=Ax+Bu

    2. 选择控制律的形式:
      u = M u c − L x u=Mu_c-Lx u=MucLx

    3. 设计过程:
      S 1 : 闭环系统化为 d x d t = A x + B ( M u c − L x ) = ( A − B L ) x + B M u c = d x d t = A c ( θ ) x + B c ( θ ) u c S 2 : 假设 A c ( θ ) , B c ( θ ) 满足 { A c ( θ 0 ) = A m B c ( θ 0 ) = B m S 3 : 假设以下方程有解 { A − B L = A m B M = B m S 4 : 因此 ( A − A m ) 的列和 B m 的列是 B 的列的线性组合,那么 { L = ( B T B ) − 1 B T ( A − A m ) = ( B m T B ) − 1 B m T ( A − A m ) M = ( B T B ) − 1 B T B m = ( B m T B ) − 1 B m T B m S 5 : 引入误差变量 e = x − x m ⟶ x m = x − e S 6 : 对误差变量求导 d e d t = d x d t − d x m d t = ( A − B L ) x + B M u c − A m x m − B m u c = A m e + ( A − B L − A m ) x + ( B M − B m ) u c = A m e + ( A c ( θ ) − A m ) x + ( B c ( θ ) − B m ) u c = A m e + Ψ ( θ − θ 0 ) S 7 : 选择能量函数 V ( e , θ ) = 1 2 [ γ e T P e + ( θ − θ 0 ) T ( θ − θ 0 ) ] S 8 : 对能量函数求导 d V d t = − γ 2 e T Q e + ( θ − θ 0 ) T ( d θ d t + γ Ψ T P e ) S 9 : 令 d θ d t + γ Ψ T P e = 0 ,有 d θ d t = − γ Ψ T P e \begin{align} S1 :& 闭环系统化为 \\ &\frac{\rm dx}{\rm dt} = Ax+B(Mu_c-Lx) = (A-BL)x+BMu_c = \frac{\rm dx}{\rm dt}=A_c(\theta)x+B_c(\theta)u_c\\ S2 :& 假设 A_c(\theta),B_c(\theta)满足 \left\{ \begin{array}{l} A_c(\theta^0)=A_m \\ B_c(\theta^0)=B_m \end{array} \right. \\ S3 :& 假设以下方程有解 \left\{ \begin{array}{l} A-BL = A_m \\ BM = B_m \end{array} \right. \\ S4 :& 因此(A-A_m)的列和B_m的列是B的列的线性组合,那么 \\ &\left\{ \begin{array}{l} L = (B^TB)^{-1}B^T(A-A_m) = (B_m^TB)^{-1}B_m^T(A-A_m) \\ M = (B^TB)^{-1}B^TB_m = (B_m^TB)^{-1}B_m^TB_m \end{array} \right. \\ S5 :& 引入误差变量 \\ &e = x-x_m \longrightarrow x_m=x-e \\ S6 :& 对误差变量求导 \\ &\frac{\rm de}{\rm dt} =\frac{\rm dx}{\rm dt}-\frac{\rm dx_m}{\rm dt} \\ &= (A-BL)x+BMu_c-A_mx_m-B_mu_c \\ &= A_me+(A-BL-A_m)x+(BM-B_m)u_c \\ &= A_me+(A_c(\theta)-A_m)x+(B_c(\theta)-B_m)u_c \\ &= A_me+\Psi(\theta-\theta^0) \\ S7 :& 选择能量函数 V(e,\theta)=\frac{1}{2}\left[ \gamma e^TPe+(\theta-\theta^0)^T(\theta-\theta^0) \right] \\ S8 :& 对能量函数求导 \frac{\rm dV}{\rm dt}=-\frac{\gamma}{2}e^TQe+(\theta-\theta^0)^T(\frac{\rm d\theta}{\rm dt}+\gamma\Psi^TPe) \\ S9 :& 令 \frac{\rm d\theta}{\rm dt} +\gamma\Psi^TPe =0 ,有 \frac{\rm d\theta}{\rm dt} = -\gamma\Psi^TPe \end{align} S1:S2:S3:S4:S5:S6:S7:S8:S9:闭环系统化为dtdx=Ax+B(MucLx)=(ABL)x+BMuc=dtdx=Ac(θ)x+Bc(θ)uc假设Ac(θ),Bc(θ)满足{Ac(θ0)=AmBc(θ0)=Bm假设以下方程有解{ABL=AmBM=Bm因此(AAm)的列和Bm的列是B的列的线性组合,那么{L=(BTB)1BT(AAm)=(BmTB)1BmT(AAm)M=(BTB)1BTBm=(BmTB)1BmTBm引入误差变量e=xxmxm=xe对误差变量求导dtde=dtdxdtdxm=(ABL)x+BMucAmxmBmuc=Ame+(ABLAm)x+(BMBm)uc=Ame+(Ac(θ)Am)x+(Bc(θ)Bm)uc=Ame+Ψ(θθ0)选择能量函数V(e,θ)=21[γeTPe+(θθ0)T(θθ0)]对能量函数求导dtdV=2γeTQe+(θθ0)T(dtdθ+γΨTPe)dtdθ+γΨTPe=0,有dtdθ=γΨTPe

    4. 该方法要求系统中所有的状态变量都能被测量到。

  3. 例3

    1. Figure:

      ACmd-14-03
    2. 推导过程:
      S 1 : 误差函数为 e = ( k G ( s ) θ − k 0 G ( s ) ) u c = k G ( s ) ( θ − θ 0 ) u c ,其中 θ 0 = k 0 k S 2 : 在状态空间中,参数 θ 和误差 e 之间的关系可以表示为 { d x d t = A x + B ( θ − θ 0 ) u c e = C x S 3 : 如果均质系统 x ˙ = A x 是渐进稳定的(传递函数严格正实, S P R ),存在正定矩阵 P 和 Q A T P + P A = − Q S 4 : 选择如下李雅普诺夫函数 V ( x , θ ) = 1 2 [ γ x T P x + ( θ − θ 0 ) 2 ] S 5 : 其导数为 d V d t = γ 2 ( d x T d t P x + x T P d x d t ) + ( θ − θ 0 ) d θ d t = γ 2 { [ A x + B u v ( θ − θ 0 ) ] T P x + x T P [ A x + B u c ( θ − θ 0 ) ] } + ( θ − θ 0 ) d θ d t = − γ 2 x T Q x + ( θ − θ 0 ) ( d θ d t + γ u c B T P x ) \begin{align} S1 :& 误差函数为 \\ & e=(kG(s)\theta - k_0G(s))u_c = kG(s)(\theta-\theta^0)u_c ,其中\theta^0=\frac{k_0}{k} \\ S2 :& 在状态空间中,参数\theta 和 误差 e之间的关系可以表示为 \\ & \left\{\begin{array}{l} \frac{\rm dx}{\rm dt}=Ax+B(\theta-\theta^0)u_c \\ e=Cx \end{array}\right. \\ S3 :& 如果均质系统\dot x=Ax 是渐进稳定的(传递函数严格正实,SPR),存在正定矩阵P和Q \\ & A^TP+PA=-Q \\ S4 :& 选择如下李雅普诺夫函数 \\ & V(x,\theta)=\frac{1}{2}\left[ \gamma x^TPx+(\theta-\theta^0)^2 \right] \\ S5 :& 其导数为 \\ & \frac{\rm dV}{\rm dt} = \frac{\gamma}{2}\left( \frac{\rm dx^T}{\rm dt}Px+x^TP\frac{\rm dx}{dt} \right) + (\theta-\theta^0)\frac{\rm d\theta}{\rm dt} \\ & =\frac{\gamma}{2}\left\{\left[Ax+Bu_v(\theta-\theta^0) \right]^TPx +x^TP\left[Ax+Bu_c(\theta-\theta^0) \right]\right\} + (\theta-\theta^0)\frac{\rm d\theta}{\rm dt} \\ & =-\frac{\gamma}{2}x^TQx+(\theta-\theta^0)(\frac{\rm d\theta}{\rm dt}+\gamma u_cB^TPx) \end{align} S1:S2:S3:S4:S5:误差函数为e=(kG(s)θk0G(s))uc=kG(s)(θθ0)uc,其中θ0=kk0在状态空间中,参数θ和误差e之间的关系可以表示为{dtdx=Ax+B(θθ0)uce=Cx如果均质系统x˙=Ax是渐进稳定的(传递函数严格正实,SPR),存在正定矩阵PQATP+PA=Q选择如下李雅普诺夫函数V(x,θ)=21[γxTPx+(θθ0)2]其导数为dtdV=2γ(dtdxTPx+xTPdtdx)+(θθ0)dtdθ=2γ{[Ax+Buv(θθ0)]TPx+xTP[Ax+Buc(θθ0)]}+(θθ0)dtdθ=2γxTQx+(θθ0)(dtdθ+γucBTPx)

    3. 如果选择参数调整律为:
      d θ d t = − γ u c B T P x \frac{\rm d\theta}{\rm dt}=-\gamma u_cB^TPx dtdθ=γucBTPx
      此时,在 x ≠ 0 x \neq 0 x=0 的情况下, d V / d t < 0 \rm dV /\rm dt <0 dV/dt<0 成立;当 t → ∞ t \rightarrow \infin t 时,状态向量 x → 0 x \rightarrow 0 x0 且误差 e = C x → 0 e=Cx \rightarrow0 e=Cx0 ;但是不能保证参数误差 θ − θ 0 \theta-\theta^0 θθ0 趋于 0 0 0

    4. 输出反馈

      1. 存在的问题:上述结果是非常严格的,因为它要求全部状态可测。

      2. 假设传递函数严格正实(SPR),存在正定矩阵 P , Q P,Q P,Q ,使得:
        A T P + P A = − Q A^TP+PA=-Q ATP+PA=Q

      3. 如果李雅普诺夫方程可以选择,就可以得到一个利用输出反馈的参数调整律,令:
        B T P = C B^TP=C BTP=C
        其中, C C C 是系统的输出矩阵。选定此 P P P 后,有:
        B T P x = C x = e B^TPx=Cx=e BTPx=Cx=e
        于是参数调整律变化为:
        d θ d t = − γ u c B T P x = − γ u c C x = − γ u c e \frac{\rm d\theta}{\rm dt} = -\gamma u_c B^TPx = -\gamma u_c Cx = -\gamma u_c e dtdθ=γucBTPx=γucCx=γuce

    5. MIT 方案: d θ d t = − γ ⋅ e ⋅ y m \frac{\rm d\theta}{\rm dt}=- \gamma \cdot e \cdot y_m dtdθ=γeym

      基于Lyapunov稳定性理论的结果: d θ d t = − γ u c e \frac{\rm d\theta}{\rm dt}=-\gamma u_c e dtdθ=γuce

    6. Figure:

      ACmd-14-04

15-增益调度自适应系统

一、增益调度系统概述
  1. Figure:

    ACmd-15-01
  2. 思想:利用辅助变量测出环境或者被控对象自身的变化,比如“增益”的变化,然后利用控制器补偿这种“增益”的变化所引起的控制系统性能的降低。

  3. 实现:通过“函数设定”或“查表法”,又称为增益列表补偿法。

二、增益调度自适应控制系统举例
  1. 例1:非线性阀门控制系统

    1. Figure:非线性阀门控制系统框图

      ACmd-15-02

      假设系统存在非线性环节 f ( ⋅ ) f(\cdot) f(),系统参数:
      G 0 ( s ) = 1 ( s + 1 ) 3 ν = f ( u ) = u 4 , u ≥ 0 G c ( s ) = K [ 1 + 1 T i s ] T i = 1 , K = 0.15 \begin{matrix} G_0(s)=\frac{1}{(s+1)^3} & \nu=f(u)=u^4,u\geq 0 \\ G_c(s)=K\left[ 1+\frac{1}{T_is} \right] & T_i=1,K=0.15 \end{matrix} G0(s)=(s+1)31Gc(s)=K[1+Tis1]ν=f(u)=u4,u0Ti=1,K=0.15
      u c u_c uc 为阶跃信号,当其增大后,系统振荡。

    2. Figure:加上非线性环节后的控制系统的框图

      ACmd-15-03

      对非线性环节的逆的估计:
      f ^ − 1 ( c ) = { 0.433 c , 0 ≤ c ≤ 3 0.0538 c + 1.139 , 3 ≤ c ≤ 16 \hat f^{-1}(c)= \left\{ \begin{align} &0.433c, &0 \leq c \leq 3 \\ &0.0538c+1.139, &3 \leq c \leq 16 \end{align} \right. f^1(c)={0.433c,0.0538c+1.139,0c33c16
      加入非线性环节后,系统特性变好,当 u c u_c uc 较大时,系统也不再振荡。

    3. 阀门的输入作为调度变量,改变“开环增益”来补偿阀门非线性特性对系统造成的影响。

    4. 总结:通过增加非线性补偿环节,闭环系统的特性有显著提高。可以通过改进补偿环节的近似程度进一步提高闭环系统的性能。

    5. 问题阀门的非线性特性要是不知道呢?

  2. 例2:水位控制系统

    1. Figure:水位控制系统框图

      ACmd-15-04

      其中:
      A ( h ) ——水箱的横截面积, h ——液位的高度, ρ ——液体的密度, p = ρ g h + p a ——液体内部的压强,其中 p a 为标准大气压强(假设为常数) ω i ——输入流量, ω o = k Δ p ——输出流量,其中 Δ p = p − p a 。 \begin{align} A(h) &——水箱的横截面积, \\ h &——液位的高度, \\ \rho &——液体的密度, \\ p=\rho g h +p_a &——液体内部的压强,其中p_a为标准大气压强(假设为常数) \\ \omega_i &——输入流量, \\ \omega_o=k \sqrt{\Delta p} &——输出流量,其中\Delta p=p-p_a。 \\ \end{align} A(h)hρp=ρgh+paωiωo=kΔp ——水箱的横截面积,——液位的高度,——液体的密度,——液体内部的压强,其中pa为标准大气压强(假设为常数)——输入流量,——输出流量,其中Δp=ppa

    2. 体积的表示:
      V = ∫ 0 h A ( τ ) d τ d V d t = A ( h ) d h d t = ω i − k ρ g h V=\int ^h_0A(\tau)\rm d\tau \\ \frac{\rm dV}{\rm dt} =A(h) \frac{\rm dh}{\rm dt} =\omega_i -k \sqrt{\rho g h} V=0hA(τ)dτdtdV=A(h)dtdh=ωikρgh

    3. 推导过程

      1. 系统的状态空间描述:
        x ˙ = 1 A ( x ) ( u − c x ) = f ( x , u ) y = x \begin{align} \dot x&=\frac{1}{A(x)}(u-c\sqrt{x})=f(x,u) \\ y&=x \end{align} x˙y=A(x)1(ucx )=f(x,u)=x
        其中: x = h , u = ω i , c = k ρ g x=h,u=\omega_i,c=k\sqrt{\rho g} x=h,u=ωi,c=kρg

      2. 引入增广系统:
        { x ˙ = f ( x , u ) σ ˙ = x − r y = x \left\{ \begin{array}{l} \dot x=f(x,u) \\ \dot \sigma =x-r \end{array} \right. \\ y=x {x˙=f(x,u)σ˙=xry=x
        引入比例积分控制律:
        u = − k 1 ( α ) e − k 2 ( α ) σ u=-k_1(\alpha)e-k_2(\alpha)\sigma u=k1(α)ek2(α)σ
        其中, α \alpha α 为期望的水位高度。有:
        x ˙ = 1 A ( x ) [ − k 1 ( α ) e − k 2 ( α ) σ − c x ] \dot x =\frac{1}{A(x)}\left[-k_1(\alpha)e-k_2(\alpha) \sigma -c\sqrt{x}\right] x˙=A(x)1[k1(α)ek2(α)σcx ]

      3. 以上系统在平衡点 ( x s s , σ s s ) (x_{ss},\sigma_{ss}) (xss,σss) 处线性化后得到:
        [ x ˙ δ σ ˙ δ ] = [ − c ( α ) 2 A ( α ) α − 1 A ( α ) k 1 ( α ) − 1 A ( α ) k 2 ( α ) 1 0 ] [ x δ σ δ ] + [ 1 A ( α ) k 1 ( α ) − 1 ] r δ y δ = [ 1 0 ] [ x δ σ δ ] \begin{align} \left[\begin{matrix} \dot x_\delta \\ \dot \sigma_\delta \end{matrix}\right] &= \left[\begin{matrix} -\frac{c\sqrt(\alpha)}{2A(\alpha)\alpha}-\frac{1}{A(\alpha)}k_1(\alpha) & -\frac{1}{A(\alpha)}k_2(\alpha) \\ 1 & 0 \end{matrix}\right] \left[\begin{matrix} x_\delta \\ \sigma_\delta \end{matrix}\right] + \left[\begin{matrix} \frac{1}{A(\alpha)}k_1(\alpha) \\ -1 \end{matrix}\right] r_\delta \\ y_\delta &= \left[\begin{matrix} 1 & 0 \end{matrix}\right] \left[\begin{matrix} x_\delta \\ \sigma_\delta \end{matrix}\right] \end{align} [x˙δσ˙δ]yδ=[2A(α)αc( α)A(α)1k1(α)1A(α)1k2(α)0][xδσδ]+[A(α)1k1(α)1]rδ=[10][xδσδ]
        简记为:
        ξ ˙ δ = [ a ( α ) − b ( α ) k 1 ( α ) − b ( α ) k 2 ( α ) 1 0 ] ξ δ + [ b ( α ) k 1 ( α ) − 1 ] r δ y δ = [ 1 0 ] [ x δ σ δ ] \begin{align} \dot \xi_\delta &=\left[ \begin{matrix} a(\alpha)-b(\alpha)k_1(\alpha) & -b(\alpha)k_2(\alpha) \\ 1 & 0 \end{matrix} \right] \xi_\delta +\left[ \begin{matrix} b(\alpha)k_1(\alpha) \\ -1 \end{matrix} \right]r_\delta \\ y_\delta &= \left[\begin{matrix} 1 & 0 \end{matrix}\right] \left[\begin{matrix} x_\delta \\ \sigma_\delta \end{matrix}\right] \end{align} ξ˙δyδ=[a(α)b(α)k1(α)1b(α)k2(α)0]ξδ+[b(α)k1(α)1]rδ=[10][xδσδ]
        其中:
        b ( α ) = 1 A ( α ) a ( α ) = − c α 2 A ( α ) α ξ δ = [ x δ σ δ ] T x δ = x − α σ δ = σ − σ s s r δ = r − α \begin{matrix} b(\alpha) = \frac{1}{A(\alpha)} & a(\alpha)=-\frac{c\sqrt{\alpha}}{2A(\alpha)\alpha} \\ \xi_\delta = \left[ \begin{matrix} x_\delta & \sigma_\delta \end{matrix} \right]^T & x_\delta=x-\alpha \\ \sigma_\delta=\sigma-\sigma_{ss} & r_\delta =r-\alpha \end{matrix} b(α)=A(α)1ξδ=[xδσδ]Tσδ=σσssa(α)=2A(α)αcα xδ=xαrδ=rα

      4. 选取控制器参数:
        k 1 ( α ) = A ( α ) 2 ξ ω n k 2 ( α ) = A ( α ) ω n 2 \begin{align} k_1(\alpha) &= A(\alpha)2\xi\omega_n \\ k_2(\alpha) &= A(\alpha)\omega_n^2 \end{align} k1(α)k2(α)=A(α)2ξωn=A(α)ωn2
        闭环系统方程:
        ξ ˙ δ = [ a ( α ) − 2 ξ ω n − ω n 2 1 0 ] ξ δ + [ 2 ξ ω n − 1 ] r δ y δ = [ 1 0 ] ξ δ \begin{align} \dot \xi_\delta &= \left[ \begin{matrix} a(\alpha)-2\xi\omega_n & -\omega_n^2 \\ 1 & 0 \end{matrix} \right] \xi_\delta + \left[ \begin{matrix} 2\xi\omega_n \\ -1 \end{matrix} \right] r_\delta \\ y_\delta &= \left[ \begin{matrix} 1 & 0 \end{matrix} \right] \xi_\delta \end{align} ξ˙δyδ=[a(α)2ξωn1ωn20]ξδ+[2ξωn1]rδ=[10]ξδ
        被控对象的传递函数:
        G ( s ) = 2 ξ ω n s + ω n 2 s 2 + [ 2 ξ ω n − a ( α ) ] s + ω n 2 G(s) = \frac{2\xi\omega_n s+\omega_n^2}{s^2+[2\xi\omega_n-a(\alpha)]s+\omega_n^2} G(s)=s2+[2ξωna(α)]s+ωn22ξωns+ωn2

      5. 此时,控制律的形式:
        u = − k 1 ( α ) e − k 2 ( α ) σ σ ˙ = x − r \begin{align} u &=-k_1(\alpha)e-k_2(\alpha)\sigma \\ \dot \sigma &=x-r \end{align} uσ˙=k1(α)ek2(α)σ=xr
        增益调度控制律:
        u = − k 1 ( r ) e − k 2 ( r ) σ σ ˙ = x − r \begin{align} u &=-k_1(r)e-k_2(r)\sigma \\ \dot \sigma &=x-r \end{align} uσ˙=k1(r)ek2(r)σ=xr

      6. 引入增益调度控制器后,闭环系统变为:
        { x ˙ = f [ x , − k 1 ( r ) ( x − r ) − k 2 ( r ) σ ] σ ˙ = x − r y = x \begin{align} &\left\{ \begin{matrix} \dot x=f\left[x,-k_1(r)(x-r)-k_2(r)\sigma\right] \\ \dot \sigma =x-r \end{matrix} \right. \\ &y=x \end{align} {x˙=f[x,k1(r)(xr)k2(r)σ]σ˙=xry=x
        其中
        x ˙ = 1 A ( x ) [ − k 1 ( r ) ( x − r ) − k 2 ( r ) σ − c x ] \dot x =\frac{1}{A(x)}\left[-k_1(r)(x-r)-k_2(r)\sigma-c\sqrt{x}\right] x˙=A(x)1[k1(r)(xr)k2(r)σcx ]

      7. 此时被控对象的传递函数:
        G ( s ) = [ 2 ξ ω n + γ ( α ) ] s + ω n 2 s 2 + [ 2 ξ ω n − a ( α ) ] s + ω n 2 G(s)= \frac{[2\xi\omega_n+\gamma(\alpha)]s+\omega_n^2}{s^2+[2\xi\omega_n-a(\alpha)]s+\omega_n^2} G(s)=s2+[2ξωna(α)]s+ωn2[2ξωn+γ(α)]s+ωn2
        其中:
        γ ( α ) = A ′ ( α ) c α A 2 ( α ) \gamma(\alpha) = \frac{A'(\alpha)c\sqrt{\alpha}}{A^2(\alpha)} γ(α)=A2(α)A(α)cα

      8. 修改后的控制算法:
        u = − k 1 ( r ) e − k 2 ( r ) σ σ ˙ = x − r ⟶ u = − k 1 ( r ) e + η η ˙ = − k 2 ( r ) e \begin{array}{l} u=-k_1(r)e-k_2(r)\sigma \\ \dot \sigma =x-r \end{array} \longrightarrow \begin{array}{l} u=-k_1(r)e+\eta \\ \dot \eta =-k_2(r)e \end{array} u=k1(r)ek2(r)σσ˙=xru=k1(r)e+ηη˙=k2(r)e

    4. Figure:原始增益调度算法与修改后的增益调度算法

      ACmd-15-05

      根据修改后的控制算法,闭环系统在平衡点线性化:
      ξ ˙ δ = [ a ( α ) − 2 ξ ω n b ( α ) − ω n 2 b ( α ) 0 ] ξ δ + [ 2 ξ ω ω n 2 b ( α ) ] r δ y δ = [ 1 0 ] ξ δ \begin{align} \dot \xi_\delta &= \left[\begin{matrix} a(\alpha)-2\xi\omega_n & b(\alpha) \\ -\frac{\omega_n^2}{b(\alpha)} & 0 \end{matrix}\right] \xi_\delta+ \left[\begin{matrix} 2\xi\omega \\ \frac{\omega_n^2}{b(\alpha)} \end{matrix}\right] r_\delta \\ y_\delta &=\left[\begin{matrix} 1 & 0 \end{matrix}\right] \xi_\delta \end{align} ξ˙δyδ=[a(α)2ξωnb(α)ωn2b(α)0]ξδ+[2ξωb(α)ωn2]rδ=[10]ξδ
      平衡点的传递函数:
      G ( s ) = 2 ξ ω n s + ω n 2 s 2 + [ 2 ξ ω − a ( α ) ] s + ω n 2 G(s)=\frac{2\xi\omega_ns+\omega_n^2}{s^2+[2\xi\omega-a(\alpha)]s+\omega_n^2} G(s)=s2+[2ξωa(α)]s+ωn22ξωns+ωn2

    5. Figure:开环对象

      ACmd-15-06
    6. Figure:定系数 PI 控制律仿真图

      ACmd-15-07

      当阶跃信号 r r r 很大时,系统会发生振荡。

    7. Figure:增益调度系统仿真框图

      ACmd-15-08

      当阶跃信号 r r r 很大时,系统也不会发生振荡。

  3. 例3:考虑如下非线性系统

    1. 系统的表示:
      x ˙ = f ( x , u , ν , ω ) y = h ( x , ω ) y m = h m ( x , ω ) \begin{align} \dot x &= f(x,u,\nu,\omega) \\ y &= h(x,\omega) \\ y_m &= h_m(x,\omega) \end{align} x˙yym=f(x,u,ν,ω)=h(x,ω)=hm(x,ω)
      其中:
      x ——状态变量; u ——控制输入; ν ——可测到的外部输入; ω ——不确知的常参数; y ——被控输出; y m ——能测量到的有关系统的信息。 \begin{align} x &——状态变量;\\ u &——控制输入;\\ \nu &——可测到的外部输入;\\ \omega &——不确知的常参数;\\ y &——被控输出;\\ y_m &——能测量到的有关系统的信息。 \end{align} xuνωyym——状态变量;——控制输入;——可测到的外部输入;——不确知的常参数;——被控输出;——能测量到的有关系统的信息。

    2. 目的:设计“输出”反馈控制律,使系统能够“很好的”跟踪指令信号 r r r

      ​ 具体来说,就是考虑存在不确定性 ω \omega ω 的条件下,利用能够测量到的量(调度变量) ρ = [ r ν ] \rho=\left[ \begin{matrix} r \\ \nu \end{matrix} \right] ρ=[rν],最终使得控制偏差在给定范围或者趋于零,即 e = y − r → 0 e=y-r \rightarrow 0 e=yr0

    3. ρ \rho ρ 作为调度变量, ρ = α \rho=\alpha ρ=α ,控制律形式如下:
      σ ˙ = e = y − r (为了消除稳态误差引入的项) z ˙ = F ( α ) z + G 1 ( α ) σ + G 2 ( α ) y m u = L ( α ) z + M 1 ( α ) σ + M 2 ( α ) y m + M 3 ( α ) e \begin{array}{l} \dot \sigma =e=y-r(为了消除稳态误差引入的项) \\ \dot z=F(\alpha)z+G_1(\alpha)\sigma+G_2(\alpha)y_m \\ u=L(\alpha)z+M_1(\alpha)\sigma+M_2(\alpha)y_m+M_3(\alpha)e \end{array} σ˙=e=yr(为了消除稳态误差引入的项)z˙=F(α)z+G1(α)σ+G2(α)ymu=L(α)z+M1(α)σ+M2(α)ym+M3(α)e
      闭环系统方程如下:
      x ˙ = f ( x , L ( α ) z + M 1 ( α ) σ + M 2 ( α ) h m ( x , ω ) + M 3 ( α ) e , ν , ω ) σ ˙ = e = h ( x , ω ) − r z ˙ = F ( α ) z + G 1 ( α ) σ + G 2 ( α ) h m ( x , ω ) y = h ( x , ω ) \begin{array}{l} \dot x=f(x,L(\alpha)z+M_1(\alpha)\sigma+M_2(\alpha)h_m(x,\omega)+M_3(\alpha)e,\nu,\omega) \\ \dot \sigma=e=h(x,\omega)-r \\ \dot z=F(\alpha)z+G_1(\alpha)\sigma+G_2(\alpha)h_m(x,\omega) \\ y=h(x,\omega) \end{array} x˙=f(x,L(α)z+M1(α)σ+M2(α)hm(x,ω)+M3(α)e,ν,ω)σ˙=e=h(x,ω)rz˙=F(α)z+G1(α)σ+G2(α)hm(x,ω)y=h(x,ω)

      在平衡点 ( x , σ , z ) = ( x s s , σ s s , z s s ) (x,\sigma,z)=(x_{ss},\sigma_{ss},z_{ss}) (x,σ,z)=(xss,σss,zss) 以及 ρ = α \rho=\alpha ρ=α 处线性化处理得:
      { ξ ˙ δ = A f ( α , ω ) ξ δ + B f ( α , ω ) ρ δ y δ = C f ( α , ω ) ξ δ A f = [ A + B M 2 C m + B M 3 C B M 1 B L C 0 0 G 2 C m G 1 F ] B f = [ − B M 3 E − I 0 0 0 ] C f = [ C 0 0 ] \left\{\begin{array}{l} \dot \xi_\delta = A_f(\alpha,\omega)\xi_\delta+B_f(\alpha,\omega)\rho_\delta \\ y_\delta=C_f(\alpha,\omega)\xi_\delta \end{array}\right. \\ \begin{matrix} A_f = \left[ \begin{matrix} A+BM_2C_m+BM_3C & BM_1 & BL \\ C & 0 & 0 \\ G_2C_m & G_1 & F \end{matrix} \right] & B_f=\left[ \begin{matrix} -BM_3 & E \\ -I & 0 \\ 0 & 0 \end{matrix} \right] \\ C_f=\left[ \begin{matrix} C & 0 & 0 \end{matrix} \right] \end{matrix} {ξ˙δ=Af(α,ω)ξδ+Bf(α,ω)ρδyδ=Cf(α,ω)ξδAf= A+BM2Cm+BM3CCG2CmBM10G1BL0F Cf=[C00]Bf= BM3I0E00
      其中:
      A = ∂ f ∂ x B = ∂ f ∂ u C = ∂ h ∂ x C m = ∂ h m ∂ x E = ∂ f ∂ ν ξ δ = [ x − x s s σ − σ s s z − z s s ] ρ s s = ρ − α = [ r δ ν δ ] \begin{matrix} A=\frac{\partial f}{\partial x} & B=\frac{\partial f}{\partial u} & C=\frac{\partial h}{\partial x} & C_m=\frac{\partial h_m}{\partial x} \\ E=\frac{\partial f}{\partial \nu} & \xi_\delta=\left[\begin{matrix}x-x_{ss}\\\sigma-\sigma_{ss}\\z-z_{ss}\end{matrix}\right] & \rho_{ss}=\rho-\alpha=\left[\begin{matrix}r_\delta\\\nu_\delta\end{matrix}\right] \end{matrix} A=xfE=νfB=ufξδ= xxssσσsszzss C=xhρss=ρα=[rδνδ]Cm=xhm
      最终的增益调度控制律:
      σ ˙ = e = y − r z ˙ = F ( ρ ) z + G 1 ( ρ ) σ + G 2 ( ρ ) y m ( F ( ρ ) 将固定的“值”用调度变量代替) u = L ( ρ ) z + M 1 ( ρ ) σ + M 2 ( ρ ) y m + M 3 ( ρ ) e \begin{array}{l} \dot \sigma = e =y-r \\ \dot z =F(\rho) z+G_1(\rho)\sigma +G_2(\rho)y_m (F(\rho)将固定的“值”用调度变量代替)\\ u=L(\rho)z+M_1(\rho)\sigma+M_2(\rho)y_m+M_3(\rho)e \end{array} σ˙=e=yrz˙=F(ρ)z+G1(ρ)σ+G2(ρ)ymF(ρ)将固定的用调度变量代替)u=L(ρ)z+M1(ρ)σ+M2(ρ)ym+M3(ρ)e

    4. 修改控制律,假设可以测量到 y ˙ m \dot y_m y˙m
      φ ˙ = F ( ρ ) φ + G 1 ( ρ ) e + G 2 ( ρ ) y ˙ m η ˙ = L ( ρ ) φ + M 1 ( ρ ) e + M 2 ( ρ ) y ˙ m u = η + M 3 ( ρ ) e \begin{array}{l} \dot \varphi=F(\rho)\varphi +G_1(\rho)e +G_2(\rho)\dot y_m \\ \dot \eta =L(\rho)\varphi +M_1(\rho)e +M_2(\rho)\dot y_m \\ u =\eta +M_3(\rho)e \end{array} φ˙=F(ρ)φ+G1(ρ)e+G2(ρ)y˙mη˙=L(ρ)φ+M1(ρ)e+M2(ρ)y˙mu=η+M3(ρ)e
      整个闭环系统变为:
      x ˙ = f ( x , η + M 3 ( ρ ) e , ν , ω ) φ ˙ = F ( ρ ) φ + G 1 ( ρ ) e + G 2 ( ρ ) y ˙ m η ˙ = L ( ρ ) φ + M 1 ( ρ ) e + M 2 ( ρ ) y ˙ m \begin{array}{l} \dot x=f(x,\eta+M_3(\rho)e,\nu,\omega) \\ \dot \varphi=F(\rho)\varphi +G_1(\rho)e +G_2(\rho)\dot y_m \\ \dot \eta =L(\rho)\varphi +M_1(\rho)e +M_2(\rho)\dot y_m \end{array} x˙=f(x,η+M3(ρ)e,ν,ω)φ˙=F(ρ)φ+G1(ρ)e+G2(ρ)y˙mη˙=L(ρ)φ+M1(ρ)e+M2(ρ)y˙m
      其中:
      { y = h ( x , ω ) e = h ( e , ω ) − r y ˙ m = ∂ h m ∂ x ( x , ω ) f ( x , η + M 3 ( ρ ) e , ν , ω ) \left\{\begin{array}{l} y=h(x,\omega) \\ e=h(e,\omega)-r \\ \dot y_m = \frac{\partial h_m}{\partial x}(x,\omega)f(x,\eta+M_3(\rho)e,\nu,\omega) \end{array}\right. y=h(x,ω)e=h(e,ω)ry˙m=xhm(x,ω)f(x,η+M3(ρ)e,ν,ω)
      整个闭环系统的状态空间表达式简写如下:
      X ˙ = g ( X , ρ , ω ) y = h ( x , ω ) \dot X=g(X,\rho,\omega) \\ y = h(x,\omega) \\ X˙=g(X,ρ,ω)y=h(x,ω)
      其中:
      X = [ x φ η ] g ( X , ρ , φ ) = [ f ( x , η + M 3 ( ρ ) e , ν , ω ) F ( ρ ) φ + G 1 ( ρ ) e + G 2 ( ρ ) y ˙ m L ( ρ ) φ + M 1 ( ρ ) e + M 2 ( ρ ) y ˙ m ] \begin{matrix} X=\left[\begin{matrix} x\\ \varphi\\ \eta \end{matrix}\right] & g(X,\rho,\varphi)=\left[\begin{matrix}f(x,\eta+M_3(\rho)e,\nu,\omega) \\ F(\rho)\varphi+G_1(\rho)e+G_2(\rho)\dot y_m \\ L(\rho)\varphi+M_1(\rho)e+M_2(\rho)\dot y_m \end{matrix}\right] \end{matrix} X= xφη g(X,ρ,φ)= f(x,η+M3(ρ)e,ν,ω)F(ρ)φ+G1(ρ)e+G2(ρ)y˙mL(ρ)φ+M1(ρ)e+M2(ρ)y˙m

    5. 定理:考虑上述状态空间下的闭环系统,假设 ρ ( t ) \rho(t) ρ(t) 是连续可微的, ρ ( t ) ∈ S \rho(t) \in S ρ(t)S S S S D ρ D_\rho Dρ 的一个紧子集,并且 ∥ ρ ˙ ( t ) ∥ ≤ μ , ∀ t ≥ 0 \| \dot \rho(t) \| \leq \mu,\forall t \geq0 ρ˙(t)μ,t0 。那么,存在正的常数 k 1 , k 2 , k 3 k_1,k_2,k_3 k1,k2,k3 T T T ,使得如果 μ < k 1 \mu < k_1 μ<k1 ∥ X ( 0 ) − X s s ( ρ ( 0 ) , ω ) ∥ ≤ k 2 \| X(0)-X_{ss}(\rho(0),\omega) \| \leq k_2 X(0)Xss(ρ(0),ω)k2 ,那么 X ( t ) X(t) X(t) t ≥ 0 t \geq0 t0 上为一致有界,并且:
      ∥ e ( t ) ∥ ≤ k μ , ∀ t ≥ T \| e(t) \| \leq k\mu,\forall t \geq T e(t)kμ,tT
      更进一步,如果 ρ ( t ) → ρ s s \rho(t) \rightarrow \rho_{ss} ρ(t)ρss 并且当 t → ∞ t \rightarrow \infin t ρ ˙ ( t ) → 0 \dot \rho(t) \rightarrow 0 ρ˙(t)0 ,那么:
      e ( t ) → 0 , t → ∞ e(t) \rightarrow 0,t \rightarrow \infin e(t)0,t
      定理说明:如果调度变量缓慢变化并且初始状态离平衡点足够的近,那么跟踪误差将会与调度变量的变化值成正比,并且如果调度变量趋近于常值,则跟踪误差将趋近于零。

    6. 假如得不到 y ˙ m \dot y_m y˙m,则采用如下控制律:
      φ ˙ = F ( ρ ) φ + G 1 ( ρ ) e + G 2 ( ρ ) ϑ η ˙ = L ( ρ ) φ + M 1 ( ρ ) e + M 2 ( ρ ) ϑ u = η + M 3 ( ρ ) e ε ξ ˙ = − ξ + y m , ϑ = 1 ε ( − ξ + y m ) \begin{array}{l} \dot \varphi=F(\rho)\varphi+G_1(\rho)e+G_2(\rho) \vartheta \\ \dot \eta =L(\rho) \varphi +M_1(\rho)e +M_2(\rho)\vartheta \\ u =\eta +M_3(\rho)e \\ \varepsilon \dot \xi =-\xi+y_m,\vartheta=\frac{1}{\varepsilon}(-\xi+y_m) \end{array} φ˙=F(ρ)φ+G1(ρ)e+G2(ρ)ϑη˙=L(ρ)φ+M1(ρ)e+M2(ρ)ϑu=η+M3(ρ)eεξ˙=ξ+ym,ϑ=ε1(ξ+ym)
      最终的闭环传递函数为:
      X ˙ = g ( X , ρ , ω ) + N ( ρ ) ( ϑ − y ˙ m ) ε ϑ ˙ = − ϑ + y ˙ m y = h ( x , ω ) N ( ρ ) = [ 0 G 2 M 2 ] \begin{array}{l} \dot X=g(X,\rho,\omega)+N(\rho)(\vartheta-\dot y_m) \\ \varepsilon \dot \vartheta = -\vartheta +\dot y_m \\ y = h(x,\omega) \\ N(\rho) = \left[\begin{matrix} 0 \\ G_2 \\M_2 \end{matrix}\right] \end{array} X˙=g(X,ρ,ω)+N(ρ)(ϑy˙m)εϑ˙=ϑ+y˙my=h(x,ω)N(ρ)= 0G2M2

  4. 例4:空间机器人重力补偿控制系统

  5. 结论:增益调度方法思路简洁,可有效提高非线性控制系统的控制性能。

  6. 问题如何将增益调度的思路和基于参数估计的随机自适应系统有效结合?
    将会与调度变量的变化值成正比,并且如果调度变量趋近于常值,则跟踪误差将趋近于零。

  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
DDR3 控制器设计是指用于DDR3内存模块的控制器电路设计。DDR3控制器需要负责内存数据的读取、写入和管理,以及内存模块和CPU之间的数据传输和协调工作。 首先,在DDR3控制器设计中,需要考虑时序控制、命令解码、信号发送接收等方面的功能。时序控制是指控制内存模块中的时钟和数据传输时序,确保数据能够在正确的时间被读取或写入。命令解码则是指对CPU发送的命令进行解析和处理,从而启动对应的内存操作。信号发送接收则是指控制器需要能够正确地发送和接收DDR3内存模块的信号,包括地址、数据和控制信号等。 其次,DDR3控制器设计需要考虑功耗和散热的问题。在高速内存数据传输过程中,控制器需要保持低功耗的同时保证稳定的工作。因此,在设计中需要采取一系列措施来降低功耗,比如采用低功耗设计方案、优化电路布局和信号传输线路等,同时还需要设计散热解决方案来确保控制器不会因为过热而影响性能。 最后,DDR3控制器设计还需要考虑可靠性和稳定性。内存数据的读写准确性和稳定性对系统的正常运行起着至关重要的作用,因此在设计过程中需要注重信号完整性、抗干扰能力和错误纠正机制等方面的设计。 综上所述,DDR3控制器设计需要综合考虑时序控制、功耗与散热、可靠性与稳定性等多个方面,保证控制器能够稳定高效地管理和传输DDR3内存数据,从而提升系统性能和可靠性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值