模型参考自适应控制器(MRAC)系列: 1.基于Lyapunov稳定判据的自适应律推导

模型参考自适应控制(MRAC)

引言

在设计一个控制系统时,其闭环稳定性,指令跟踪能力以及应对各种不确定因素(如模型误差,环境扰动,信号噪声等)的鲁棒性都是非常重要的性能参考指标.然而,当我们的基线控制器运行在充满不确定性的环境中时,其各项性能指标都不可避免地遭受不同程度的损失. 因此,我们提出这样一个问题:
是否可以通过某种控制器设计方法,提升控制器在充满不确定因素的环境中运行的性能,甚至恢复至与基线控制器在理想条件下运行的性能相当的水平?
基于这个问题,我们引入模型参考控制的概念.其设计理念是通过设计一个稳定的,理想条件下可预测的,满足我们需求的系统模型作为参考模型,再利用实际信号和参考模型信号之间的残差驱动着去修正最终控制律,使得实际的闭环系统特性趋近于预设的理想模型特性,即达到模型跟踪的效果.在这个过程中,理想模型中是不存在不确定因素的,因此模型参考控制也可以达到减少实际系统中不确定因素带来的性能损失的作用.

问题方程建立

不失一般性的,我们将存在不确定度的开环系统以以下形式建立状态空间模型
x ˙ p = A p x p + B p Λ u + B p δ p ( x p ) \dot{x}_p=A_px_p+B_p\Lambda u +B_p\delta_p(x_p) x˙p=Apxp+BpΛu+Bpδp(xp)
其中 A p , B p A_p,B_p Ap,Bp 分别是系统矩阵与控制矩阵, x p x_p xp 是系统状态量, u u u 是系统控制律.

上述状态空间模型的维度信息如下:
x p ∈ ℜ n p × 1 A p ∈ ℜ n p × n p B p ∈ ℜ n p × m Λ ∈ ℜ m × m u ∈ ℜ m × 1 δ p ∈ ℜ m × 1 \begin{aligned} x_p &\in \Re^{n_p \times 1} \\ A_p &\in \Re^{n_p \times n_p} \\ B_p &\in \Re^{n_p \times m} \\ \Lambda &\in \Re^{m \times m} \\ u &\in \Re^{m \times1} \\ \delta_p &\in \Re^{m \times 1} \\ \end{aligned} xpApBpΛuδpnp×1np×npnp×mm×mm×1m×1
Λ \Lambda Λ 被定义为已知的控制有效性不确定度,其形式如下
Λ = [ Λ 1 0 ⋯ 0 0 Λ 2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ Λ m ] ≻ 0 \Lambda = \left[ \begin{matrix} \Lambda_1 & 0 & \cdots & 0 \\ 0 & \Lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \Lambda_m \\ \end{matrix} \right] \succ0 Λ=Λ1000Λ2000Λm0
δ p ( x p ) \delta_p(x_p) δp(xp) 被定义为系统非线性不确定度,其形式如下
δ p ( x p ) = W p T σ p ( x p ) \begin{aligned} &\delta_p(x_p)=W_p^T \sigma_p(x_p)\\& \end{aligned} δp(xp)=WpTσp(xp)
其维度信息如下:
δ p ∈ ℜ m × 1 W p ∈ ℜ n s × m σ p ∈ ℜ n s × 1 \begin{aligned} \delta_p &\in \Re^{m \times 1}\\ W_p &\in \Re^{n_s \times m}\\ \sigma_p &\in \Re^{n_s \times 1} \end{aligned} δpWpσpm×1ns×mns×1
其中 W p W_p Wp 是未知的权重, σ p \sigma_p σp 是已知的基函数,其形式如下
σ p ( x p ) = [ σ p 1 ( x p )   ⋯   σ p s ( x p ) ] σ p i : ℜ n p × 1 → ℜ n s × 1 ,  a locally lipschitz function \begin{aligned} &\sigma_p(x_p)=[\sigma_{p_1}(x_p) \ \cdots \ \sigma_{p_s}(x_p)] \\ &\sigma_{p_i}: \Re^{n_p\times1} \to \Re^{n_s\times1},\text{ a locally lipschitz function} \end{aligned} σp(xp)=[σp1(xp)  σps(xp)]σpi:np×1ns×1, a locally lipschitz function
因此,我们可以将系统的状态空间方程重写为

x ˙ p = A p x p + B p Λ [ u + Λ − 1 B p δ p ( x p ) ] \dot{x}_p=A_px_p+Bp\Lambda[u + \Lambda^{-1}B_p\delta_p(x_p)] x˙p=Apxp+BpΛ[u+Λ1Bpδp(xp)]
值得注意的是,上述方程的形式告诉我们,控制律 u u u 可以访问所有的不确定度. 那么,这是否意味着我们可以通过设计控制律 u u u
来达到消除系统不确定度带来的影响的目的呢? 先不着急,带着这个问题,我们先在不考虑不确定度的前提下为这个开环系统设计一个基线控制器.

首先,我们将整体控制律 u u u 定义为以下的形式
u = u n + u a u = u_n + u_a u=un+ua
其中 u n u_n un 是在理想(即模型准确,不存在不确定因素)的条件下为开环系统设计的控制律,称为基线控制律.
u a u_a ua 则是为消除系统不确定度影响而设计的控制律,称为自适应控制律.

现在,我们就为这个理想系统设计基线控制器,在这种情况下 u a = 0 u_a = 0 ua=0,我们将基线控制律 u n u_n un设计为以下形式
u = u n + u a = u n = − K x x p + K r r u = u_n + u_a = u_n = -K_xx_p+K_rr u=un+ua=un=Kxxp+Krr
其中 K x K_x K

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值