人工智能时代计算机架构的趋势与挑战 - 会员交流会精彩摘要

2019年 Robin.ly 会员交流会上,NVIDIA、AMD、Google等公司的专家探讨了人工智能时代计算机架构的挑战。在Moore's Law放缓背景下,专用处理器如GPU和TPU成为满足深度学习算力需求的关键。圆桌讨论涉及硬件环境选择、边缘计算设备、深度学习加速器的分化与趋同等议题,揭示了行业的未来趋势。
摘要由CSDN通过智能技术生成

Robin.ly 是立足硅谷的视频内容平台,服务全球工程师和研究人员,通过与知名人工智能科学家、创业者、投资人和领导者的深度对话和现场交流活动,传播行业动态和商业技能,打造人才全方位竞争力。

2019年4月Robin.ly举办了第一次线下专业会员交流会。来自NVIDIA、AMD、Google等公司的相关领域工程师及研究人员就“人工智能时代计算机架构的发展趋势和挑战”进行了热烈讨论。以下为精彩内容节选。

 

长按二维码或点击“阅读原文”

访问Robin.ly查看完整英文要点


1

   背景简介

主持人:Chulian Zhang, compute architect@NVIDIA

20世纪70年代以来微处理器的单线程性能一直保持着指数增长。而在2010年后,由于Moore's Law和Dennard scaling几近终结,其增长速度明显放缓。

图片来源:www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

然而对算力的需求不仅没有减缓,反而越来越大,特别是深度学习的再次爆发更是让这种需求变得愈加紧迫。为了满足这种需求,一个有效的解决方案就是使用专用处理器。专用处理器的一个典型例子就是GPU,一种专门加速图形和并行计算的处理器。下图中可以看到在CPU 加速已经明显减缓的情况下,GPU加速的计算能力却还在快速上升。

图片来源:https://www.nvidia.com/es-la/data-center/hpc/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值