深度学习_GAN_GAN的应用

GAN作为一种强有力的生成模型,其应用十分广泛。

一.图像翻译

所谓图像翻译,指从一幅图像到另一幅图像的转换。可以类比机器翻译,一种语言转换为另一种语言。常见的图像翻译任务有:

  1. 图像去噪
  2. 图像超分辨率:训练一个端到端的网络,输入是原始图片,输出是超分辨率后的图片。
  3. 图像补全:训练一个端到端的网络,输入是原始图片,输出是补全后的图片。
  4. 风格迁移
  5. 等等

二.文本生成

三.数据增广

GAN的良好生成特性今年来也开始被用于数据增广。以行人重识别为例,有许多GAN用于数据增广的工作。行人重识别问题一个难点在于不同摄像头下拍摄的人物环境,角度差别非常大,导致存在较大的Domain gap。因此,可以考虑使用GAN来生产不同摄像头下的数据进行数据增广。

四.语音领域

相比于图像领域遍地开花,GAN在语音领域则应用相对少了很多。SEGAN可以进行音频去噪,缓解了传统方法支持噪声种类少,泛化能力不强的问题。

五.强化学习

GAN与强化学习领域结合,形成更多有趣的研究。

六.半监督学习

GAN可以通过提供高质量的数据,从而能够优化完善半监督学习。

七.艺术领域

使用GAN进行艺术创作也是非常流形的一种应用方式,可以通过用户交互的方式,输入简单的内容从而产生艺术作品的创作。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Rocky Ding*

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值