[bzoj3601][高斯消元][莫比乌斯反演]一个人的数论

Description

在这里插入图片描述

题解

首先先让自己铭记一个结论
∑ d ∣ n μ ( d ) = ( n = 1 ) \sum_{d|n}\mu (d)=(n=1) dnμ(d)=(n=1)
这道题就是要求
∑ i i d ∗ [ g c d ( i , n ) = = 1 ] \sum_i i^d*[gcd(i,n)==1] iid[gcd(i,n)==1]
利用上面的结论不难得到
∑ i i d ∗ ∑ j ∣ i , j ∣ n μ ( j ) \sum_i i^d*\sum_{j|i,j|n}\mu(j) iidji,jnμ(j)
后面两个枚举约数当然不爽,自然把枚举 n n n扔到前面来
∑ j ∣ n μ ( j ) ∗ ∑ j ∣ i i d \sum_{j|n} \mu(j)*\sum_{j|i}i^d jnμ(j)jiid
由于最小值已经确定了,并且次幂是一个可以拆开的数,那么式子化成
∑ j ∣ n μ ( j ) ∗ j d ∗ ∑ i = 1 n j i d \sum_{j|n}\mu(j)*j^d*\sum_{i=1}^{\frac{n}{j}}i^d jnμ(j)jdi=1jnid
后面是经典自然数幂和的形式,熟悉的不难得到这是一个 d + 1 d+1 d+1次多项式,设 a i a_i ai为其系数,显然我们可以列出前 d + 2 d+2 d+2个方程高斯消元暴力求系数
那么就是
∑ j ∣ n μ ( j ) ∗ j d ∗ ∑ i = 0 d a i ∗ ( n j ) i \sum_{j|n}\mu(j)*j^d *\sum_{i=0}^{d}a_i*(\frac{n}{j})^i jnμ(j)jdi=0dai(jn)i
后面已经可以枚举到 d d d啦,把他扔到前面来就是
∑ i = 0 d a i ∗ ∑ j ∣ n μ ( j ) ∗ j d ∗ ( n j ) i \sum_{i=0}^{d} a_i*\sum_{j|n}\mu(j)*j^d*(\frac{n}{j})^i i=0daijnμ(j)jd(jn)i
后面一拆就可以得到
∑ i = 0 d a i ∗ n i ∗ ∑ j ∣ n μ ( j ) ∗ j d − i \sum_{i=0}^d a_i*n^i*\sum_{j|n}\mu(j)*j^{d-i} i=0dainijnμ(j)jdi
注意我们的 μ \mu μ在质因子最高次幂大于 1 1 1时是为 0 0 0的,则我们可以构造一个单项式使其等于后式
∑ j ∣ n μ ( j ) ∗ j d − i = Π i = 1 W ( 1 − p i d − i ) \sum_{j|n}\mu(j)*j^{d-i}=\Pi_{i=1}^{W}(1-p_i^{d-i}) jnμ(j)jdi=Πi=1W(1pidi)
即每个质因子可选可不选,奇数个时为负,偶数个时显然为正
然后暴力做就完事啦…
em…主要是让自己记住上面第一个结论,与自然数幂和出现时可以把多项式往式子里代这种巧妙做法啊

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<vector>
#include<ctime>
#include<map>
#include<bitset>
#include<set>
#define LL long long
#define mp(x,y) make_pair(x,y)
#define pll pair<long long,long long>
#define pii pair<int,int>
using namespace std;
inline int read()
{
	int f=1,x=0;char ch=getchar();
	while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
	while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
	return x*f;
}
int stack[20];
inline void write(int x)
{
	if(x<0){putchar('-');x=-x;}
    if(!x){putchar('0');return;}
    int top=0;
    while(x)stack[++top]=x%10,x/=10;
    while(top)putchar(stack[top--]+'0');
}
inline void pr1(int x){write(x);putchar(' ');}
inline void pr2(int x){write(x);putchar('\n');}
const int MAXN=1005;
const int mod=1e9+7;
int D,W;
int a[MAXN],b[MAXN],num;
int pow_mod(int a,LL b)
{
	int ret=1;
	if(b<0)b+=mod-1;
	while(b)
	{
		if(b&1)ret=1LL*ret*a%mod;
		a=1LL*a*a%mod;b>>=1;
	}
	return ret;
}
void ad(int &x,int y){x+=y;if(x>=mod)x-=mod;}
void dl(int &x,int y){x-=y;if(x<0)x+=mod;}
int id[MAXN];
int mp[MAXN][MAXN];
void gauss(int mx)
{
	for(int i=1;i<=mx;i++)
	{
		for(int j=1;j<=i;j++)ad(mp[i][mx+1],pow_mod(j,D));
		for(int j=1;j<=mx;j++)mp[i][j]=pow_mod(i,j-1);
	}
	for(int i=1;i<=mx;i++)
	{
		int u=0;
		for(int j=i;j<=mx;j++)if(mp[j][i]>mp[u][i]||!u)u=j;
		for(int j=1;j<=mx+1;j++)swap(mp[u][j],mp[i][j]);
		for(int j=i+1;j<=mx;j++)
		{
			int temp=1LL*mp[j][i]*pow_mod(mp[i][i],mod-2)%mod;
			for(int k=i;k<=mx+1;k++)dl(mp[j][k],1LL*mp[i][k]*temp%mod);
		}
	}
	for(int i=mx;i>=1;i--)
	{
		int su=mp[i][mx+1];
		for(int j=i+1;j<=mx;j++)if(mp[i][j])
		{
			int cal=1LL*mp[j][j]*mp[i][j]%mod;
			dl(su,cal);
		}
		mp[i][i]=1LL*su*pow_mod(mp[i][i],mod-2)%mod;
		id[i-1]=mp[i][i];
	}
}
int main()
{
	D=read();W=read();
	for(int i=1;i<=W;i++)a[i]=read(),b[i]=read();
	gauss(D+2);
//	for(int i=1;i<=5;i++)
//	{
//		int su=0;
//		for(int j=0;j<=D+1;j++)ad(su,1LL*id[j]*pow_mod(i,j)%mod);
//		pr1(i);pr2(su);
//	}
	int ans=0;
	for(int i=0;i<=D+1;i++)
	{
		int temp=1LL*id[i],su=1;
		for(int j=1;j<=W;j++)temp=1LL*temp*pow_mod(a[j],1LL*b[j]*i)%mod;
		for(int j=1;j<=W;j++)su=1LL*su*(1-pow_mod(a[j],D-i)+mod)%mod;
		ad(ans,1LL*temp*su%mod);
	}
	pr2(ans);
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值