pytorch下验证是否安装了cuda和cuDNN

本文介绍如何在Python环境中使用PyTorch库检查CUDA和cuDNN是否已正确安装。通过运行特定的Python代码,可以判断GPU加速库是否可用,这对于深度学习项目的运行至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

进入python环境,然后输入以下代码测试:

#判断是否安装了cuda
import torch
print(torch.cuda.is_available())  #返回True则说明已经安装了cuda
#判断是否安装了cuDNN
from torch.backends import  cudnn 
print(cudnn.is_available())  #返回True则说明已经安装了cuDNN

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值