库诺特模型:完全信息博弈和不完全信息博弈的求解及代码实现

写在前面

库诺特(Cournot)模型中,有两个参与者,称为企业1 和企业2;每个企业的战略是选择产量;支付是利润,为两个企业产量的函数。

模型中, q i ∈ [ 0 , ∞ ) q_i \in [0,\infty) qi[0,) 代表第 i i i 个企业的产量, C i ( q i ) C_i(q_i) Ci(qi) 代表成本函数, P = P ( q 1 + q 2 ) P=P(q_1+q_2) P=P(q1+q2) 代表逆需求函数( P P P 是价格; Q ( P ) Q(P) Q(P) 是原需求函数。)那么,第 i i i 个企业的利润为:

π i ( q 1 , q 2 ) = q i P ( q 1 + q 2 ) − C i ( q i ) , i = 1 , 2 , \pi_i(q_1,q_2) = q_i P(q_1+q_2) - C_i(q_i), \quad i=1,2, πi(q1,q2)=qiP(q1+q2)Ci(qi),i=1,2,

式中, ( q 1 ∗ , q 2 ∗ ) (q_1^*,q_2^*) (q1,q2) 为纳什均衡(Nash equilibrium)下各企业产量,为

( q 1 ∗ , q 2 ) ≤ ( q 1 ∗ , q 2 ∗ ) ≤ ( q 1 , q 2 ∗ ) (q_1^*,q_2) \le (q_1^*,q_2^*) \le (q_1,q_2^*) (q1,q2)(q1,q2)(q1,q2)

那么,如何求解纳什均衡呢?对每个企业的利润函数求一阶导数,并零其等于零,求解公式为

∂ π 1 ∂ q 1 = P ( q 1 + q 2 ) + q 1 P ′ ( q 1 + q 2 ) − C 1 ′ ( q 1 ) = 0 , ∂ π 2 ∂ q 2 = P ( q 1 + q 2 ) + q 2 P ′ ( q 1 + q 2 ) − C 2 ′ ( q 2 ) = 0 , \begin{aligned} \frac{\partial \pi_1}{\partial q_1} = P(q_1+q_2) + q_1 P'(q_1+q_2) - C_1'(q_1) = 0, \\ \frac{\partial \pi_2}{\partial q_2} = P(q_1+q_2) + q_2 P'(q_1+q_2) - C_2'(q_2) = 0, \end{aligned} q1π1=P(q1+q2)+q1P(q1+q2)C1(q1)=0,q2π2=P(q1+q2)+q2P(q1+q2)C2(q2)=0,

上述两个最优化一阶条件定义了两个反应函数(reaction function),为

q 1 ∗ = R 1 ( q 2 ) , q 2 ∗ = R 2 ( q 1 ) . \begin{aligned} q_1^* = R_1(q_2), \\ q_2^* = R_2(q_1). \end{aligned} q1=R1(q2),q2=R2(q1).

下面就两类博弈信息获取情况进行分别讨论,一类是完全信息博弈,一类是不完全信息博弈。

完全信息博弈

求解

更加具体地,考虑一类上述库诺特模型的简单情况。假定每个企业具有相同的不变单位成本,即: C 1 ( q 1 ) = q 1 c C_1(q_1)=q_1 c C1(q1)=q1c C 2 ( q 2 ) = q 2 c C_2(q_2)=q_2 c C2(q2)=q2c。需求函数为 P = a − ( q 1 + q 2 ) P=a-(q_1+q_2) P=a(q1+q2)。那么,两个企业的利润函数可以写为

π 1 ( q 1 , q 2 ) = q 1 ( a − q 1 − q 2 ) − q 1 c , \pi_1(q_1,q_2) = q_1 (a-q_1-q_2) - q_1 c, π1(q1,q2)=q1(aq1q2)q1c,

π 2 ( q 1 , q 2 ) = q 2 ( a − q 1 − q 2 ) − q 2 c . \pi_2(q_1,q_2) = q_2 (a-q_1-q_2) - q_2 c. π2(q1,q2)=q2(aq1q2)q2c.

可以得到最优化一阶条件,为

∂ π 1 ∂ q 1 = ( a − q 1 − q 2 ) − q 1 − c = 0 , \frac{\partial \pi_1}{\partial q_1} = (a-q_1-q_2)-q_1-c = 0, q1π1=(aq1q2)q1c=0,

∂ π 2 ∂ q 2 = ( a − q 1 − q 2 ) − q 2 − c = 0. \frac{\partial \pi_2}{\partial q_2} = (a-q_1-q_2)-q_2-c = 0. q2π2=(aq1q2)q2c=0.

下面是求解过程,求得反应函数 R 1 ( q 2 ) R_1(q_2) R1(q2) R 2 ( q 1 ) R_2(q_1) R2(q1)。对于上式,把 q 1 q_1 q1 保留,把其他变量挪向等号右边,为

2 q 1 ∗ = a − q 2 − c ⇒ q 1 ∗ = 0.5 ( a − q 2 − c ) . 2 q_1^* = a-q_2-c \\ \Rightarrow q_1^* = 0.5(a-q_2-c). 2q1=aq2cq1=0.5(aq2c).

同样地,对于上式,把 q 2 q_2 q2 保留,把其他变量挪向等号右边,为

2 q 2 ∗ = a − q 1 − c ⇒ q 2 ∗ = 0.5 ( a − q 1 − c ) . 2 q_2^* = a-q_1-c \\ \Rightarrow q_2^* = 0.5(a-q_1-c). 2q2=aq1cq2=0.5(aq1c).

将上两式联立,求解得到 q 1 ∗ q_1^* q1 q 2 ∗ q_2^* q2,这里可以手算得到,但是我们可以借助工具来求解等式。下面给出 MATLAB 代码,为

clc;clear;

syms q1 q2 a c

eq1 = 0.5*(a-q2-c)-q1 == 0;
eq2 = 0.5*(a-q1-c)-q2 == 0;

[sol_q1 sol_q2] = solve(eq1,eq2,q1,q2);

disp(['The value of q1 is: ', char(sol_q1)]);
disp(['The value of q2 is: ', char(sol_q2)]);

最后得到纳什均衡,为

q 1 ∗ = q 2 ∗ = 1 3 ( a − c ) . q_1^* = q_2^* = \frac{1}{3} (a-c). q1=q2=31(ac).

将纳什均衡的值代入利润函数中,为

π 1 ( q 1 ∗ , q 2 ∗ ) = 1 3 ( a − c ) ( a − 2 3 a + 2 3 ) − 1 3 ( a − c ) c = 1 3 ( a − c ) ( 1 3 a + 2 3 c ) − 1 3 a c + 1 3 c 2 = 1 9 a 2 + 2 9 a c − 1 9 a c − 2 9 c 2 − 1 3 a c + 1 3 c 2 = 1 9 a 2 − 2 9 a c + 1 9 c 2 = 1 9 ( a − c ) 2 . \begin{aligned} \pi_1(q_1^*,q_2^*) &= \frac{1}{3}(a-c)(a-\frac{2}{3}a+\frac{2}{3}) - \frac{1}{3}(a-c)c \\ &= \frac{1}{3} (a-c)(\frac{1}{3} a + \frac{2}{3} c) - \frac{1}{3} ac + \frac{1}{3} c^2 \\ &= \frac{1}{9} a^2 + \frac{2}{9} ac - \frac{1}{9} ac - \frac{2}{9} c^2 - \frac{1}{3} ac + \frac{1}{3} c^2 \\ &= \frac{1}{9} a^2 - \frac{2}{9} ac + \frac{1}{9} c^2 \\ &= \frac{1}{9} (a-c)^2. \end{aligned} π1(q1,q2)=31(ac)(a32a+32)31(ac)c=31(ac)(31a+32c)31ac+31c2=91a2+92ac91ac92c231ac+31c2=91a292ac+91c2=91(ac)2.

与垄断情况作比较,给出垄断企业问题命名,为

max ⁡ Q π = Q ( a − Q − c ) . \max_Q \pi = Q(a-Q-c). Qmaxπ=Q(aQc).

求解一阶最优性条件,为

∂ π ∂ Q = a − 2 Q − c = 0 , \frac{\partial \pi}{\partial Q} = a - 2Q -c = 0, Qπ=a2Qc=0,

求解得到

Q monopoly ∗ = 1 2 ( a − c ) . Q^*_{\text{monopoly}} = \frac{1}{2}(a-c). Qmonopoly=21(ac).

那么垄断利润为

π monopoly ∗ = 1 2 ( a − c ) ( a − 1 2 a + 1 2 c − c ) = 1 2 ( a − c ) ⋅ 1 2 ( a − c ) = 1 4 ( a − c ) 2 \begin{aligned} \pi^*_{\text{monopoly}} &= \frac{1}{2}(a-c)(a-\frac{1}{2}a+\frac{1}{2}c-c) \\ &= \frac{1}{2}(a-c) \cdot \frac{1}{2}(a-c) \\ &= \frac{1}{4}(a-c)^2 \end{aligned} πmonopoly=21(ac)(a21a+21cc)=21(ac)21(ac)=41(ac)2

结论

就产量而言,

  1. 垄断企业的最优产量为 Q monopoly ∗ = 1 2 ( a − c ) Q^*_{\text{monopoly}} = \frac{1}{2} (a-c) Qmonopoly=21(ac)
  2. 寡头竞争中企业的最优产量为 Q Cournot ∗ = 2 3 ( a − c ) Q^*_{\text{Cournot}} = \frac{2}{3} (a-c) QCournot=32(ac)

即: Q monopoly ∗ < Q Cournot ∗ Q^*_{\text{monopoly}} < Q^*_{\text{Cournot}} Qmonopoly<QCournot

就利润而言,

  1. 垄断企业的利润为 π monopoly ∗ = 1 4 ( a − c ) 2 \pi^*_{\text{monopoly}} = \frac{1}{4}(a-c)^2 πmonopoly=41(ac)2
  2. 寡头竞争中企业的利润为 π Cournot ∗ = 2 9 ( a − c ) 2 \pi^*_{\text{Cournot}} = \frac{2}{9}(a-c)^2 πCournot=92(ac)2

即: π monopoly ∗ < π Cournot ∗ \pi^*_{\text{monopoly}} < \pi^*_{\text{Cournot}} πmonopoly<πCournot

可以发现,垄断企业的产量低于寡头竞争的总产量,而利润高于寡头竞争中的总利润。

不完全信息博弈

介绍

上一节讨论的模型,其基础建立在博弈中所有参与人都已获知其他人的成本,即成本是所有参与人的共同知识。但是,现实中许多情况不满足这样的假设,即有些情况下无法获知对方的所有信息。例如,和一位陌生人打交道时,不知道对方阵营九宫格,对方到底是守序善良呢,还是混乱邪恶呢,我们不知道。

考虑一类和人交往的例子。

对方是守序善良的人,那么我们自己自然可以在与对方的交往中获得许多快乐;反之,对方是混乱邪恶的人,那么我们在与之交往的过程中不免难过。这里的快乐和难过可以抽象为支付函数。

在传统的博弈论视角里,我们似乎无法处理这样的情况。因为一个人无法既守序善良又混乱邪恶。我们只能够猜测他是守序善良的可能性,或者混乱邪恶的可能性。那么,海萨尼(Harsanyi)提出一种方法,引入“自然”(nature)来帮我们选择。我们可以考虑,当自然选择对方是守序善良时,我们应该怎么做;又或者,当自然选择对方是混乱邪恶时,我们应该怎么做。

这样就解决了一个人无法既守序善良又混乱邪恶的难题。

上述过程称为海萨尼转换(Harsanyi transformation)。

通过海萨尼转换,最终得到的纳什均衡称为贝叶斯纳什均衡(Baysian Nash equilibrium)。

求解

继续考虑上一节的库诺特模型,但将条件改为不完全信息条件,即博弈过程中,有企业1 和企业2,企业2 有高成本和低成本两类。

那么,两个企业的利润函数为

π 1 ( q 1 , q 2 ) = q 1 ( a − q 1 − q 2 ) − q 1 c 1 , \pi_1(q_1,q_2) = q_1 (a-q_1-q_2) - q_1 c_1, π1(q1,q2)=q1(aq1q2)q1c1,

π 2 L ( q 1 , q 2 L ) = q 2 ( a − q 1 − q 2 L ) − q 2 c 2 L . \pi_2^L(q_1,q_2^L) = q_2 (a-q_1-q_2^L) - q_2 c_2^L. π2L(q1,q2L)=q2(aq1q2L)q2c2L.

π 2 H ( q 1 , q 2 ) = q 2 ( a − q 1 − q 2 H ) − q 2 c 2 H . \pi_2^H(q_1,q_2) = q_2 (a-q_1-q_2^H) - q_2 c_2^H. π2H(q1,q2)=q2(aq1q2H)q2c2H.

式中,上标 L L L 代表低成本企业2, H H H 代表高成本企业2。

假定企业1 的成本 c 1 c_1 c1 为共同知识,企业2 的成本可能是 c 2 L c_2^L c2L,也可能是 c 2 H c_2^H c2H c 2 L < c 2 H c_2^L < c_2^H c2L<c2H。企业2 知道自己的成本是 c 2 L c_2^L c2L 还是 c 2 H c_2^H c2H,但企业1 只知道 c 2 = c 2 L c_2=c_2^L c2=c2L 的可能性为 μ \mu μ c 2 = c 2 H c_2=c_2^H c2=c2H 的可能性为 ( 1 − μ ) (1-\mu) (1μ) μ \mu μ 为共同知识。

考虑一类简单情况,给定参数如下。

a = 2 , c 1 = 1 , c 2 L = 3 4 , c 2 H = 5 4 , μ = 1 2 . a=2,c_1=1,c_2^L=\frac{3}{4},c_2^H=\frac{5}{4},\mu=\frac{1}{2}. a=2,c1=1,c2L=43,c2H=45,μ=21.

那么,企业1 的利润函数为

π 1 = q 1 ( 1 − q 1 − q 2 ) , \pi_1 = q_1(1-q_1-q_2), π1=q1(1q1q2),

企业2 的利润函数为

π 2 L = q 2 ( 5 4 − q 1 − q 2 ) , \pi_2^L = q_2(\frac{5}{4}-q_1-q_2), π2L=q2(45q1q2),

π 2 H = q 2 ( 3 4 − q 1 − q 2 ) , \pi_2^H = q_2(\frac{3}{4}-q_1-q_2), π2H=q2(43q1q2),

求企业2 的反应函数,为

∂ π 2 L ∂ q 2 = ( 5 4 − q 1 − q 2 ) − q 2 = 0 , \frac{\partial \pi_2^L}{\partial q_2} = (\frac{5}{4}-q_1-q_2)-q_2=0, q2π2L=(45q1q2)q2=0,

∂ π 2 H ∂ q 2 = ( 3 4 − q 1 − q 2 ) − q 2 = 0. \frac{\partial \pi_2^H}{\partial q_2} = (\frac{3}{4}-q_1-q_2)-q_2=0. q2π2H=(43q1q2)q2=0.

对于上两式,把 q 2 q_2 q2 保留,把其他变量挪向等号右边,为

q 2 L ∗ = 1 2 ( 5 4 − q 1 ) , q_2^{L*} = \frac{1}{2}(\frac{5}{4}-q_1), q2L=21(45q1),

q 2 H ∗ = 1 2 ( 3 4 − q 1 ) , q_2^{H*} = \frac{1}{2}(\frac{3}{4}-q_1), q2H=21(43q1),

那么,企业1 选择产量 q 1 q_1 q1,需要最大化下列利润期望函数,为

E π 1 = 1 2 q 1 ( 1 − q 1 − q 2 L ∗ ) + 1 2 q 1 ( 1 − q 1 − q 2 H ∗ ) . E \pi_1 = \frac{1}{2} q_1 (1-q_1-q_2^{L*}) + \frac{1}{2} q_1 (1-q_1-q_2^{H*}). Eπ1=21q1(1q1q2L)+21q1(1q1q2H).

一阶最优化条件为

∂ E π 1 ∂ q 1 = 1 2 ( 1 − q 1 − q 2 L ∗ ) − 1 2 q 1 + 1 2 ( 1 − q 1 − q 2 H ∗ ) − 1 2 q 1 = 1 2 − 1 2 q 1 − 1 2 q 2 L ∗ − 1 2 q 1 + 1 2 − 1 2 q 1 − 1 2 q 2 H ∗ − 1 2 q 1 = 1 − 2 q 1 − 1 2 ( q 2 L ∗ + q 2 H ∗ ) = 0. \begin{aligned} \frac{\partial E \pi_1}{\partial q_1} &= \frac{1}{2} (1-q_1-q_2^{L*}) - \frac{1}{2} q_1 + \frac{1}{2} (1-q_1-q_2^{H*}) - \frac{1}{2} q_1 \\ &= \frac{1}{2} -\frac{1}{2} q_1 - \frac{1}{2} q_2^{L*} - \frac{1}{2} q_1 + \frac{1}{2} - \frac{1}{2} q_1 - \frac{1}{2} q_2^{H*} - \frac{1}{2} q_1 \\ &= 1 - 2 q_1 - \frac{1}{2} (q_2^{L*}+q_2^{H*}) = 0. \end{aligned} q1Eπ1=21(1q1q2L)21q1+21(1q1q2H)21q1=2121q121q2L21q1+2121q121q2H21q1=12q121(q2L+q2H)=0.

企业1 的最优产量为

q 1 ∗ = 1 2 ( 1 − 1 2 q 2 L ∗ − 1 2 q 2 H ∗ ) . q_1^* = \frac{1}{2}(1-\frac{1}{2}q_2^{L*}-\frac{1}{2}q_2^{H*}). q1=21(121q2L21q2H).

联立 q 1 ∗ q_1^* q1 q 2 L ∗ q_2^{L*} q2L q 2 H ∗ q_2^{H*} q2H 的表达式,可以得到贝叶斯均衡为

q 1 ∗ = 1 3 , q 2 L ∗ = 11 24 , q 2 H ∗ = 5 24 . q_1^*=\frac{1}{3},q_2^{L*} = \frac{11}{24},q_2^{H*}=\frac{5}{24}. q1=31,q2L=2411,q2H=245.

上面考虑的情况是企业1 不知道企业2 成本的情况。

再考虑一类企业2 为低成本的情况。

企业1 的反应函数为

q 1 N E ∗ = 1 2 ( 1 − q 2 L ∗ ) , q_{1NE}^* = \frac{1}{2}(1-q_2^{L*}), q1NE=21(1q2L),

企业2 的反应函数为

q 2 N E L ∗ = 1 2 ( 5 4 − q 1 ) , q_{2NE}^{L*} = \frac{1}{2}(\frac{5}{4}-q_1), q2NEL=21(45q1),

那么,纳什均衡为

q 1 N E ∗ = 1 4 , q 2 N E L ∗ = 1 2 . q_{1NE}^*=\frac{1}{4},q_{2NE}^{L*} = \frac{1}{2}. q1NE=41,q2NEL=21.

最后考虑一类企业2 为高成本的情况。

企业1 的反应函数为

q 1 N E ∗ = 1 2 ( 1 − q 2 L ∗ ) , q_{1NE}^* = \frac{1}{2}(1-q_2^{L*}), q1NE=21(1q2L),

企业2 的反应函数为

q 2 N E H ∗ = 1 2 ( 3 4 − q 1 ) , q_{2NE}^{H*} = \frac{1}{2}(\frac{3}{4}-q_1), q2NEH=21(43q1),

那么,纳什均衡为

q 1 N E ∗ = 5 12 , q 2 N E H ∗ = 1 6 . q_{1NE}^*=\frac{5}{12},q_{2NE}^{H*} = \frac{1}{6}. q1NE=125,q2NEH=61.

上述求解过程可以通过 MATLAB 代码求解得到,代码如下。

clc;clear;close all;

syms q1 q2_L q2_H
syms a c1 c2_L c2_H

cost = 'high-and-low';
% cost = 'low';
% cost = 'high';

if strcmp(cost,'high-and-low')
%% 求解方程组(高、低成本都算进去)
    eq1 = 0.5*(0.75-q1)-q2_H == 0;
    eq2 = 0.5*(1.25-q1)-q2_L == 0;
    eq3 = 0.5*(1-0.5*q2_L-0.5*q2_H)-q1 == 0;

    [sol_q1, sol_q2_L, sol_q2_H] = solve(eq1, eq2, eq3, q1, q2_L, q2_H);
    
    pi1 = 0.5*sol_q1*(1-sol_q1-sol_q2_L) +  0.5*sol_q1*(1-sol_q1-sol_q2_H);
    pi2_L = sol_q2_L*(1.25-sol_q1-sol_q2_L);
    pi2_H = sol_q2_H*(0.75-sol_q1-sol_q2_H);

    disp(['The value of q1 is: ',char(sol_q1)]);
    disp(['The value of q2_L is: ', char(sol_q2_L)]);
    disp(['The value of q2_H is: ', char(sol_q2_H)]);
    
    disp(['The payoff of q1 is: ',char(pi1)]);
    disp(['The payoff of q2_L is: ', char(pi2_L)]);
    disp(['The payoff of q2_H is: ', char(pi2_H)]);
elseif strcmp(cost,'low')
%% 求解方程组(仅算低成本)
    eq1 = 0.5*(1.25-q1)-q2_L == 0;
    eq2 = 0.5*(1-q2_L)-q1 == 0;

    [sol_q1, sol_q2_L] = solve(eq1, eq2, q1, q2_L);
    
    pi1 = sol_q1*(1-sol_q1-sol_q2_L);
    pi2_L = sol_q2_L*(1.25-sol_q1-sol_q2_L);

    disp(['The value of q1 is: ',char(sol_q1)]);
    disp(['The value of q2_L is: ', char(sol_q2_L)]);
    
    disp(['The payoff of q1 is: ',char(pi1)]);
    disp(['The payoff of q2_L is: ', char(pi2_L)]);
elseif strcmp(cost,'high')
%% 求解方程组(仅算高成本)
    eq1 = 0.5*(0.75-q1)-q2_H == 0;
    eq2 = 0.5*(1-q2_H)-q1 == 0;

    [sol_q1, sol_q2_H] = solve(eq1, eq2, q1, q2_H);
    
    pi1 = sol_q1*(1-sol_q1-sol_q2_H);
    pi2_H = sol_q2_H*(0.75-sol_q1-sol_q2_H);

    disp(['The value of q1 is: ',char(sol_q1)]);
    disp(['The value of q2_H is: ', char(sol_q2_H)]);
    
    disp(['The payoff of q1 is: ',char(pi1)]);
    disp(['The payoff of q2_H is: ', char(pi2_H)]);
else
    error('The selected COST is wrong!')
end

结论

对于本节讨论的三类情况,企业1 不知道企业2 的成本,企业1 知道企业2 为低成本和企业1 知道企业2 为高成本,得到的贝叶斯均衡/纳什均衡总结如下。

q 1 N E L ∗ = 1 4 < q 1 ∗ = 1 3 , q 1 N E H ∗ = 5 12 > q 1 ∗ = 1 3 , q 2 N E L ∗ = 1 2 > q 2 L ∗ = 11 24 , q 2 N E H ∗ = 1 6 < q 2 H ∗ = 5 24 . \begin{aligned} &q_{1NE}^{L*} = \frac{1}{4} < q_1^* = \frac{1}{3}, \quad q_{1NE}^{H*} = \frac{5}{12} > q_1^* = \frac{1}{3}, \\ &q_{2NE}^{L*} = \frac{1}{2} > q_2^{L*} = \frac{11}{24}, \quad q_{2NE}^{H*} = \frac{1}{6} < q_2^{H*} = \frac{5}{24}. \end{aligned} q1NEL=41<q1=31,q1NEH=125>q1=31,q2NEL=21>q2L=2411,q2NEH=61<q2H=245.

各企业利润总结如下。

π 1 ∗ = 1 9 , π 2 L ∗ = 121 576 , π 2 H ∗ = 25 576 , π 1 N E L ∗ = 1 16 , π 2 N E L ∗ = 1 4 , π 1 N E H ∗ = 25 144 , π 2 N E H ∗ = 1 36 . \begin{aligned} &\pi_1^* = \frac{1}{9}, \quad \pi_2^{L*} = \frac{121}{576}, \quad \pi_2^{H*} = \frac{25}{576}, \\ &\pi_{1NE}^{L*} = \frac{1}{16}, \quad \pi_{2NE}^{L*} = \frac{1}{4}, \\ &\pi_{1NE}^{H*} = \frac{25}{144}, \quad \pi_{2NE}^{H*} = \frac{1}{36}. \end{aligned} π1=91,π2L=576121,π2H=57625,π1NEL=161,π2NEL=41,π1NEH=14425,π2NEH=361.

写得更加易读一些,为

π 1 ∗ = 0.1111... , π 2 L ∗ = 0.2101 , π 2 H ∗ = 0.0434 , π 1 N E L ∗ = 0.0625 , π 2 N E L ∗ = 0.25 , π 1 N E H ∗ = 0.1736 , π 2 N E H ∗ = 0.0278. \begin{aligned} &\pi_1^* = 0.1111..., \quad \pi_2^{L*} = 0.2101, \quad \pi_2^{H*} = 0.0434, \\ &\pi_{1NE}^{L*} = 0.0625, \quad \pi_{2NE}^{L*} = 0.25, \\ &\pi_{1NE}^{H*} = 0.1736, \quad \pi_{2NE}^{H*} = 0.0278. \end{aligned} π1=0.1111...,π2L=0.2101,π2H=0.0434,π1NEL=0.0625,π2NEL=0.25,π1NEH=0.1736,π2NEH=0.0278.

对于企业1 而言,在不完全信息条件下,

  1. 企业2 为低成本时,企业1 的产量相较完全信息下企业1 的产量更高,利润更高;
  2. 企业2 为高成本时,企业1 的产量相较完全信息下企业1 的产量更低,利润更低。

对于企业2 而言,在不完全信息条件下,

  1. 企业2 为低成本时,其产量相较完全信息下企业2 的产量更低,利润更低;
  2. 企业2 为高成本时,其产量相较完全信息下企业2 的产量更高,利润更高。

最后

欢迎通过邮箱联系我:lordofdapanji@foxmail.com

来信请注明你的身份,否则恕不回信。

参考文献:

[1] 张维迎. 博弈论与信息经济学 [M]. 上海: 上海人民出版社, 2013: 43-45, 143-149.

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: // 防抖函数,用于在指定的时间间隔内阻止函数的执行 // 首先定义一个变量记录上次触发事件的时间 let lastTime: number; // 定义函数fn,可以接受一个参数delay,表示延迟时间 function debounce(delay: number) { // 返回一个函数,用于接收传入的参数fn,用于执行 return function(fn: Function) { // 获取当前时间 let nowTime = +new Date(); // 如果距离上次执行的时间超过了delay,则执行 if (nowTime - lastTime > delay) { fn(); // 更新上次执行的时间 lastTime = nowTime; } }; }// 使用示例 let debounceFn = debounce(1000); debounceFn(() => { // 这里写需要被防抖的代码 }); ### 回答2: 防抖函数是指在一段时间内,如果有连续的函数调用,只执行最后一次调用。以下是使用TypeScript编写的一个带有注释的防抖函数代码: ```typescript /** * 防抖函数:在一段时间内,如果有连续的函数调用,只执行最后一次调用 * @param {Function} func - 需要执行的函数 * @param {number} wait - 延迟时间,单位为毫秒 * @returns {Function} - 包装后的函数 */ function debounce(func: Function, wait: number): Function { let timeout: any; return function executedFunction(...args: any[]) { // 清除当前等待的延迟任务 clearTimeout(timeout); // 创建一个新的延迟任务 timeout = setTimeout(() => { func.apply(this, args); }, wait); }; } ``` 上述代码中的防抖函数接受两个参数:`func`表示需要执行的函数,`wait`表示延迟时间。在返回的函数中,通过`setTimeout`设置一个延迟任务,当外部连续调用时,会清除之前的延迟任务,再重新创建新的延迟任务来延迟执行函数。借助闭包,保留了`timeout`变量的引用,以便在下一次调用时清除之前的延迟任务。 这个防抖函数可以用于处理一些频繁触发的事件,例如窗口大小变化、滚动事件等需要控制触发频率的场景。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值