写在前面
库诺特(Cournot)模型中,有两个参与者,称为企业1 和企业2;每个企业的战略是选择产量;支付是利润,为两个企业产量的函数。
模型中,qi∈[0,∞)q_i \in [0,\infty)qi∈[0,∞) 代表第 iii 个企业的产量,Ci(qi)C_i(q_i)Ci(qi) 代表成本函数,P=P(q1+q2)P=P(q_1+q_2)P=P(q1+q2) 代表逆需求函数(PPP 是价格;Q(P)Q(P)Q(P) 是原需求函数。)那么,第 iii 个企业的利润为:
πi(q1,q2)=qiP(q1+q2)−Ci(qi),i=1,2, \pi_i(q_1,q_2) = q_i P(q_1+q_2) - C_i(q_i), \quad i=1,2, πi(q1,q2)=qiP(q1+q2)−Ci(qi),i=1,2,
式中,(q1∗,q2∗)(q_1^*,q_2^*)(q1∗,q2∗) 为纳什均衡(Nash equilibrium)下各企业产量,为
(q1∗,q2)≤(q1∗,q2∗)≤(q1,q2∗) (q_1^*,q_2) \le (q_1^*,q_2^*) \le (q_1,q_2^*) (q1∗,q2)≤(q1∗,q2∗)≤(q1,q2∗)
那么,如何求解纳什均衡呢?对每个企业的利润函数求一阶导数,并零其等于零,求解公式为
∂π1∂q1=P(q1+q2)+q1P′(q1+q2)−C1′(q1)=0,∂π2∂q2=P(q1+q2)+q2P′(q1+q2)−C2′(q2)=0, \begin{aligned} \frac{\partial \pi_1}{\partial q_1} = P(q_1+q_2) + q_1 P'(q_1+q_2) - C_1'(q_1) = 0, \\ \frac{\partial \pi_2}{\partial q_2} = P(q_1+q_2) + q_2 P'(q_1+q_2) - C_2'(q_2) = 0, \end{aligned} ∂q1∂π1=P(q1+q2)+q1P′(q1+q2)−C1′(q1)=0,∂q2∂π2=P(q1+q2)+q2P′(q1+q2)−C2′(q2)=0,
上述两个最优化一阶条件定义了两个反应函数(reaction function),为
q1∗=R1(q2),q2∗=R2(q1). \begin{aligned} q_1^* = R_1(q_2), \\ q_2^* = R_2(q_1). \end{aligned} q1∗=R1(q2),q2∗=R2(q1).
下面就两类博弈信息获取情况进行分别讨论,一类是完全信息博弈,一类是不完全信息博弈。
完全信息博弈
求解
更加具体地,考虑一类上述库诺特模型的简单情况。假定每个企业具有相同的不变单位成本,即:C1(q1)=q1cC_1(q_1)=q_1 cC1(q1)=q1c 和 C2(q2)=q2cC_2(q_2)=q_2 cC2(q2)=q2c。需求函数为 P=a−(q1+q2)P=a-(q_1+q_2)P=a−(q1+q2)。那么,两个企业的利润函数可以写为
π1(q1,q2)=q1(a−q1−q2)−q1c, \pi_1(q_1,q_2) = q_1 (a-q_1-q_2) - q_1 c, π1(q1,q2)=q1(a−q1−q2)−q1c,
π2(q1,q2)=q2(a−q1−q2)−q2c. \pi_2(q_1,q_2) = q_2 (a-q_1-q_2) - q_2 c. π2(q1,q2)=q2(a−q1−q2)−q2c.
可以得到最优化一阶条件,为
∂π1∂q1=(a−q1−q2)−q1−c=0, \frac{\partial \pi_1}{\partial q_1} = (a-q_1-q_2)-q_1-c = 0, ∂q1∂π1=(a−q1−q2)−q1−c=0,
∂π2∂q2=(a−q1−q2)−q2−c=0. \frac{\partial \pi_2}{\partial q_2} = (a-q_1-q_2)-q_2-c = 0. ∂q2∂π2=(a−q1−q2)−q2−c=0.
下面是求解过程,求得反应函数 R1(q2)R_1(q_2)R1(q2) 和 R2(q1)R_2(q_1)R2(q1)。对于上式,把 q1q_1q1 保留,把其他变量挪向等号右边,为
2q1∗=a−q2−c⇒q1∗=0.5(a−q2−c). 2 q_1^* = a-q_2-c \\ \Rightarrow q_1^* = 0.5(a-q_2-c). 2q1∗=a−q2−c⇒q1∗=0.5(a−q2−c).
同样地,对于上式,把 q2q_2q2 保留,把其他变量挪向等号右边,为
2q2∗=a−q1−c⇒q2∗=0.5(a−q1−c). 2 q_2^* = a-q_1-c \\ \Rightarrow q_2^* = 0.5(a-q_1-c). 2q2∗=a−q1−c⇒q2∗=0.5(a−q1−c).
将上两式联立,求解得到 q1∗q_1^*q1∗ 和 q2∗q_2^*q2∗,这里可以手算得到,但是我们可以借助工具来求解等式。下面给出 MATLAB 代码,为
clc;clear;
syms q1 q2 a c
eq1 = 0.5*(a-q2-c)-q1 == 0;
eq2 = 0.5*(a-q1-c)-q2 == 0;
[sol_q1 sol_q2] = solve(eq1,eq2,q1,q2);
disp(['The value of q1 is: ', char(sol_q1)]);
disp(['The value of q2 is: ', char(sol_q2)]);
最后得到纳什均衡,为
q1∗=q2∗=13(a−c). q_1^* = q_2^* = \frac{1}{3} (a-c). q1∗=q2∗=31(a−c).
将纳什均衡的值代入利润函数中,为
π1(q1∗,q2∗)=13(a−c)(a−23a+23)−13(a−c)c=13(a−c)(13a+23c)−13ac+13c2=19a2+29ac−19ac−29c2−13ac+13c2=19a2−29ac+19c2=19(a−c)2. \begin{aligned} \pi_1(q_1^*,q_2^*) &= \frac{1}{3}(a-c)(a-\frac{2}{3}a+\frac{2}{3}) - \frac{1}{3}(a-c)c \\ &= \frac{1}{3} (a-c)(\frac{1}{3} a + \frac{2}{3} c) - \frac{1}{3} ac + \frac{1}{3} c^2 \\ &= \frac{1}{9} a^2 + \frac{2}{9} ac - \frac{1}{9} ac - \frac{2}{9} c^2 - \frac{1}{3} ac + \frac{1}{3} c^2 \\ &= \frac{1}{9} a^2 - \frac{2}{9} ac + \frac{1}{9} c^2 \\ &= \frac{1}{9} (a-c)^2. \end{aligned} π1(q1∗,q2∗)=31(a−c)(a−32a+32)−31(a−c)c=31(a−c)(31a+32c)−31ac+31c2=91a2+92ac−91ac−92c2−31ac+31c2=91a2−92ac+91c2=91(a−c)2.
与垄断情况作比较,给出垄断企业问题命名,为
maxQπ=Q(a−Q−c). \max_Q \pi = Q(a-Q-c). Qmaxπ=Q(a−Q−c).
求解一阶最优性条件,为
∂π∂Q=a−2Q−c=0, \frac{\partial \pi}{\partial Q} = a - 2Q -c = 0, ∂Q∂π=a−2Q−c=0,
求解得到
Qmonopoly∗=12(a−c). Q^*_{\text{monopoly}} = \frac{1}{2}(a-c). Qmonopoly∗=21(a−c).
那么垄断利润为
πmonopoly∗=12(a−c)(a−12a+12c−c)=12(a−c)⋅12(a−c)=14(a−c)2 \begin{aligned} \pi^*_{\text{monopoly}} &= \frac{1}{2}(a-c)(a-\frac{1}{2}a+\frac{1}{2}c-c) \\ &= \frac{1}{2}(a-c) \cdot \frac{1}{2}(a-c) \\ &= \frac{1}{4}(a-c)^2 \end{aligned} πmonopoly∗=21(a−c)(a−21a+21c−c)=21(a−c)⋅21(a−c)=41(a−c)2
结论
就产量而言,
- 垄断企业的最优产量为 Qmonopoly∗=12(a−c)Q^*_{\text{monopoly}} = \frac{1}{2} (a-c)Qmonopoly∗=21(a−c);
- 寡头竞争中企业的最优产量为 QCournot∗=23(a−c)Q^*_{\text{Cournot}} = \frac{2}{3} (a-c)QCournot∗=32(a−c)。
即:Qmonopoly∗<QCournot∗Q^*_{\text{monopoly}} < Q^*_{\text{Cournot}}Qmonopoly∗<QCournot∗。
就利润而言,
- 垄断企业的利润为 πmonopoly∗=14(a−c)2\pi^*_{\text{monopoly}} = \frac{1}{4}(a-c)^2πmonopoly∗=41(a−c)2;
- 寡头竞争中企业的利润为 πCournot∗=29(a−c)2\pi^*_{\text{Cournot}} = \frac{2}{9}(a-c)^2πCournot∗=92(a−c)2
即:πmonopoly∗<πCournot∗\pi^*_{\text{monopoly}} < \pi^*_{\text{Cournot}}πmonopoly∗<πCournot∗。
可以发现,垄断企业的产量低于寡头竞争的总产量,而利润高于寡头竞争中的总利润。
不完全信息博弈
介绍
上一节讨论的模型,其基础建立在博弈中所有参与人都已获知其他人的成本,即成本是所有参与人的共同知识。但是,现实中许多情况不满足这样的假设,即有些情况下无法获知对方的所有信息。例如,和一位陌生人打交道时,不知道对方阵营九宫格,对方到底是守序善良呢,还是混乱邪恶呢,我们不知道。
考虑一类和人交往的例子。
对方是守序善良的人,那么我们自己自然可以在与对方的交往中获得许多快乐;反之,对方是混乱邪恶的人,那么我们在与之交往的过程中不免难过。这里的快乐和难过可以抽象为支付函数。
在传统的博弈论视角里,我们似乎无法处理这样的情况。因为一个人无法既守序善良又混乱邪恶。我们只能够猜测他是守序善良的可能性,或者混乱邪恶的可能性。那么,海萨尼(Harsanyi)提出一种方法,引入“自然”(nature)来帮我们选择。我们可以考虑,当自然选择对方是守序善良时,我们应该怎么做;又或者,当自然选择对方是混乱邪恶时,我们应该怎么做。
这样就解决了一个人无法既守序善良又混乱邪恶的难题。
上述过程称为海萨尼转换(Harsanyi transformation)。
通过海萨尼转换,最终得到的纳什均衡称为贝叶斯纳什均衡(Baysian Nash equilibrium)。
求解
继续考虑上一节的库诺特模型,但将条件改为不完全信息条件,即博弈过程中,有企业1 和企业2,企业2 有高成本和低成本两类。
那么,两个企业的利润函数为
π1(q1,q2)=q1(a−q1−q2)−q1c1, \pi_1(q_1,q_2) = q_1 (a-q_1-q_2) - q_1 c_1, π1(q1,q2)=q1(a−q1−q2)−q1c1,
π2L(q1,q2L)=q2(a−q1−q2L)−q2c2L. \pi_2^L(q_1,q_2^L) = q_2 (a-q_1-q_2^L) - q_2 c_2^L. π2L(q1,q2L)=q2(a−q1−q2L)−q2c2L.
π2H(q1,q2)=q2(a−q1−q2H)−q2c2H. \pi_2^H(q_1,q_2) = q_2 (a-q_1-q_2^H) - q_2 c_2^H. π2H(q1,q2)=q2(a−q1−q2H)−q2c2H.
式中,上标 LLL 代表低成本企业2, HHH 代表高成本企业2。
假定企业1 的成本 c1c_1c1 为共同知识,企业2 的成本可能是 c2Lc_2^Lc2L,也可能是 c2Hc_2^Hc2H,c2L<c2Hc_2^L < c_2^Hc2L<c2H。企业2 知道自己的成本是 c2Lc_2^Lc2L 还是c2Hc_2^Hc2H,但企业1 只知道 c2=c2Lc_2=c_2^Lc2=c2L 的可能性为 μ\muμ,c2=c2Hc_2=c_2^Hc2=c2H 的可能性为 (1−μ)(1-\mu)(1−μ),μ\muμ 为共同知识。
考虑一类简单情况,给定参数如下。
a=2,c1=1,c2L=34,c2H=54,μ=12. a=2,c_1=1,c_2^L=\frac{3}{4},c_2^H=\frac{5}{4},\mu=\frac{1}{2}. a=2,c1=1,c2L=43,c2H=45,μ=21.
那么,企业1 的利润函数为
π1=q1(1−q1−q2), \pi_1 = q_1(1-q_1-q_2), π1=q1(1−q1−q2),
企业2 的利润函数为
π2L=q2(54−q1−q2), \pi_2^L = q_2(\frac{5}{4}-q_1-q_2), π2L=q2(45−q1−q2),
或
π2H=q2(34−q1−q2), \pi_2^H = q_2(\frac{3}{4}-q_1-q_2), π2H=q2(43−q1−q2),
求企业2 的反应函数,为
∂π2L∂q2=(54−q1−q2)−q2=0, \frac{\partial \pi_2^L}{\partial q_2} = (\frac{5}{4}-q_1-q_2)-q_2=0, ∂q2∂π2L=(45−q1−q2)−q2=0,
或
∂π2H∂q2=(34−q1−q2)−q2=0. \frac{\partial \pi_2^H}{\partial q_2} = (\frac{3}{4}-q_1-q_2)-q_2=0. ∂q2∂π2H=(43−q1−q2)−q2=0.
对于上两式,把 q2q_2q2 保留,把其他变量挪向等号右边,为
q2L∗=12(54−q1), q_2^{L*} = \frac{1}{2}(\frac{5}{4}-q_1), q2L∗=21(45−q1),
或
q2H∗=12(34−q1), q_2^{H*} = \frac{1}{2}(\frac{3}{4}-q_1), q2H∗=21(43−q1),
那么,企业1 选择产量 q1q_1q1,需要最大化下列利润期望函数,为
Eπ1=12q1(1−q1−q2L∗)+12q1(1−q1−q2H∗). E \pi_1 = \frac{1}{2} q_1 (1-q_1-q_2^{L*}) + \frac{1}{2} q_1 (1-q_1-q_2^{H*}). Eπ1=21q1(1−q1−q2L∗)+21q1(1−q1−q2H∗).
一阶最优化条件为
∂Eπ1∂q1=12(1−q1−q2L∗)−12q1+12(1−q1−q2H∗)−12q1=12−12q1−12q2L∗−12q1+12−12q1−12q2H∗−12q1=1−2q1−12(q2L∗+q2H∗)=0. \begin{aligned} \frac{\partial E \pi_1}{\partial q_1} &= \frac{1}{2} (1-q_1-q_2^{L*}) - \frac{1}{2} q_1 + \frac{1}{2} (1-q_1-q_2^{H*}) - \frac{1}{2} q_1 \\ &= \frac{1}{2} -\frac{1}{2} q_1 - \frac{1}{2} q_2^{L*} - \frac{1}{2} q_1 + \frac{1}{2} - \frac{1}{2} q_1 - \frac{1}{2} q_2^{H*} - \frac{1}{2} q_1 \\ &= 1 - 2 q_1 - \frac{1}{2} (q_2^{L*}+q_2^{H*}) = 0. \end{aligned} ∂q1∂Eπ1=21(1−q1−q2L∗)−21q1+21(1−q1−q2H∗)−21q1=21−21q1−21q2L∗−21q1+21−21q1−21q2H∗−21q1=1−2q1−21(q2L∗+q2H∗)=0.
企业1 的最优产量为
q1∗=12(1−12q2L∗−12q2H∗). q_1^* = \frac{1}{2}(1-\frac{1}{2}q_2^{L*}-\frac{1}{2}q_2^{H*}). q1∗=21(1−21q2L∗−21q2H∗).
联立 q1∗q_1^*q1∗ 、q2L∗q_2^{L*}q2L∗ 和 q2H∗q_2^{H*}q2H∗ 的表达式,可以得到贝叶斯均衡为
q1∗=13,q2L∗=1124,q2H∗=524. q_1^*=\frac{1}{3},q_2^{L*} = \frac{11}{24},q_2^{H*}=\frac{5}{24}. q1∗=31,q2L∗=2411,q2H∗=245.
上面考虑的情况是企业1 不知道企业2 成本的情况。
再考虑一类企业2 为低成本的情况。
企业1 的反应函数为
q1NE∗=12(1−q2L∗), q_{1NE}^* = \frac{1}{2}(1-q_2^{L*}), q1NE∗=21(1−q2L∗),
企业2 的反应函数为
q2NEL∗=12(54−q1), q_{2NE}^{L*} = \frac{1}{2}(\frac{5}{4}-q_1), q2NEL∗=21(45−q1),
那么,纳什均衡为
q1NE∗=14,q2NEL∗=12. q_{1NE}^*=\frac{1}{4},q_{2NE}^{L*} = \frac{1}{2}. q1NE∗=41,q2NEL∗=21.
最后考虑一类企业2 为高成本的情况。
企业1 的反应函数为
q1NE∗=12(1−q2L∗), q_{1NE}^* = \frac{1}{2}(1-q_2^{L*}), q1NE∗=21(1−q2L∗),
企业2 的反应函数为
q2NEH∗=12(34−q1), q_{2NE}^{H*} = \frac{1}{2}(\frac{3}{4}-q_1), q2NEH∗=21(43−q1),
那么,纳什均衡为
q1NE∗=512,q2NEH∗=16. q_{1NE}^*=\frac{5}{12},q_{2NE}^{H*} = \frac{1}{6}. q1NE∗=125,q2NEH∗=61.
上述求解过程可以通过 MATLAB 代码求解得到,代码如下。
clc;clear;close all;
syms q1 q2_L q2_H
syms a c1 c2_L c2_H
cost = 'high-and-low';
% cost = 'low';
% cost = 'high';
if strcmp(cost,'high-and-low')
%% 求解方程组(高、低成本都算进去)
eq1 = 0.5*(0.75-q1)-q2_H == 0;
eq2 = 0.5*(1.25-q1)-q2_L == 0;
eq3 = 0.5*(1-0.5*q2_L-0.5*q2_H)-q1 == 0;
[sol_q1, sol_q2_L, sol_q2_H] = solve(eq1, eq2, eq3, q1, q2_L, q2_H);
pi1 = 0.5*sol_q1*(1-sol_q1-sol_q2_L) + 0.5*sol_q1*(1-sol_q1-sol_q2_H);
pi2_L = sol_q2_L*(1.25-sol_q1-sol_q2_L);
pi2_H = sol_q2_H*(0.75-sol_q1-sol_q2_H);
disp(['The value of q1 is: ',char(sol_q1)]);
disp(['The value of q2_L is: ', char(sol_q2_L)]);
disp(['The value of q2_H is: ', char(sol_q2_H)]);
disp(['The payoff of q1 is: ',char(pi1)]);
disp(['The payoff of q2_L is: ', char(pi2_L)]);
disp(['The payoff of q2_H is: ', char(pi2_H)]);
elseif strcmp(cost,'low')
%% 求解方程组(仅算低成本)
eq1 = 0.5*(1.25-q1)-q2_L == 0;
eq2 = 0.5*(1-q2_L)-q1 == 0;
[sol_q1, sol_q2_L] = solve(eq1, eq2, q1, q2_L);
pi1 = sol_q1*(1-sol_q1-sol_q2_L);
pi2_L = sol_q2_L*(1.25-sol_q1-sol_q2_L);
disp(['The value of q1 is: ',char(sol_q1)]);
disp(['The value of q2_L is: ', char(sol_q2_L)]);
disp(['The payoff of q1 is: ',char(pi1)]);
disp(['The payoff of q2_L is: ', char(pi2_L)]);
elseif strcmp(cost,'high')
%% 求解方程组(仅算高成本)
eq1 = 0.5*(0.75-q1)-q2_H == 0;
eq2 = 0.5*(1-q2_H)-q1 == 0;
[sol_q1, sol_q2_H] = solve(eq1, eq2, q1, q2_H);
pi1 = sol_q1*(1-sol_q1-sol_q2_H);
pi2_H = sol_q2_H*(0.75-sol_q1-sol_q2_H);
disp(['The value of q1 is: ',char(sol_q1)]);
disp(['The value of q2_H is: ', char(sol_q2_H)]);
disp(['The payoff of q1 is: ',char(pi1)]);
disp(['The payoff of q2_H is: ', char(pi2_H)]);
else
error('The selected COST is wrong!')
end
结论
对于本节讨论的三类情况,企业1 不知道企业2 的成本,企业1 知道企业2 为低成本和企业1 知道企业2 为高成本,得到的贝叶斯均衡/纳什均衡总结如下。
q1NEL∗=14<q1∗=13,q1NEH∗=512>q1∗=13,q2NEL∗=12>q2L∗=1124,q2NEH∗=16<q2H∗=524. \begin{aligned} &q_{1NE}^{L*} = \frac{1}{4} < q_1^* = \frac{1}{3}, \quad q_{1NE}^{H*} = \frac{5}{12} > q_1^* = \frac{1}{3}, \\ &q_{2NE}^{L*} = \frac{1}{2} > q_2^{L*} = \frac{11}{24}, \quad q_{2NE}^{H*} = \frac{1}{6} < q_2^{H*} = \frac{5}{24}. \end{aligned} q1NEL∗=41<q1∗=31,q1NEH∗=125>q1∗=31,q2NEL∗=21>q2L∗=2411,q2NEH∗=61<q2H∗=245.
各企业利润总结如下。
π1∗=19,π2L∗=121576,π2H∗=25576,π1NEL∗=116,π2NEL∗=14,π1NEH∗=25144,π2NEH∗=136. \begin{aligned} &\pi_1^* = \frac{1}{9}, \quad \pi_2^{L*} = \frac{121}{576}, \quad \pi_2^{H*} = \frac{25}{576}, \\ &\pi_{1NE}^{L*} = \frac{1}{16}, \quad \pi_{2NE}^{L*} = \frac{1}{4}, \\ &\pi_{1NE}^{H*} = \frac{25}{144}, \quad \pi_{2NE}^{H*} = \frac{1}{36}. \end{aligned} π1∗=91,π2L∗=576121,π2H∗=57625,π1NEL∗=161,π2NEL∗=41,π1NEH∗=14425,π2NEH∗=361.
写得更加易读一些,为
π1∗=0.1111...,π2L∗=0.2101,π2H∗=0.0434,π1NEL∗=0.0625,π2NEL∗=0.25,π1NEH∗=0.1736,π2NEH∗=0.0278. \begin{aligned} &\pi_1^* = 0.1111..., \quad \pi_2^{L*} = 0.2101, \quad \pi_2^{H*} = 0.0434, \\ &\pi_{1NE}^{L*} = 0.0625, \quad \pi_{2NE}^{L*} = 0.25, \\ &\pi_{1NE}^{H*} = 0.1736, \quad \pi_{2NE}^{H*} = 0.0278. \end{aligned} π1∗=0.1111...,π2L∗=0.2101,π2H∗=0.0434,π1NEL∗=0.0625,π2NEL∗=0.25,π1NEH∗=0.1736,π2NEH∗=0.0278.
对于企业1 而言,在不完全信息条件下,
- 企业2 为低成本时,企业1 的产量相较完全信息下企业1 的产量更高,利润更高;
- 企业2 为高成本时,企业1 的产量相较完全信息下企业1 的产量更低,利润更低。
对于企业2 而言,在不完全信息条件下,
- 企业2 为低成本时,其产量相较完全信息下企业2 的产量更低,利润更低;
- 企业2 为高成本时,其产量相较完全信息下企业2 的产量更高,利润更高。
最后
欢迎通过邮箱联系我:lordofdapanji@foxmail.com
来信请注明你的身份,否则恕不回信。
参考文献:
[1] 张维迎. 博弈论与信息经济学 [M]. 上海: 上海人民出版社, 2013: 43-45, 143-149.