笔者想要通过写博客来鞭策自己深度学习内容~虽然之前本科毕设有接触过pytorch相关代码(NeRF三维重建),但由于科研需要,还是得系统地学习一下~
本篇主要配置了pytorch环境,笔者在windows端配置环境(Ubuntu端之前已经配置过了,但还是习惯在win端操作)
1.配置深度学习pytorch环境
2.机器学习概念
在机器学习中,学习earning是一个训练模型的过程。 通过这个过程,我们可以发现正确的参数集,从而使模型强制执行所需的行为。 换句话说,我们用数据train模型。训练过程通常包含如下步骤:
- 从一个随机初始化参数的模型开始,这个模型基本没有“智能”;
- 获取一些数据样本(例如,音频片段以及对应的是或否标签);
- 调整参数,使模型在这些样本中表现得更好;
- 重复第(2)步和第(3)步,直到模型在任务中的表现令人满意。
机器学习中的关键组件
- 可以用来学习的数据(data);
- 如何转换数据的模型(model);
- 一个目标函数(objective function),用来量化模型的有效性;
- 调整模型参数以优化目标函数的算法(algorithm)。
2.1监督学习
监督学习的学习过程一般可以分为三大步骤:
- 从已知大量数据样本中随机选取一个子集,为每个样本获取真实标签。有时,这些样本已有标签(例如,患者是否在下一年内康复?);有时,这些样本可能需要被人工标记(例如,图像分类)。这些输入和相应的标签一起构成了训练数据集;
- 选择有监督的学习算法,它将训练数据集作为输入,并输出一个“已完成学习的模型”;
- 将之前没有见过的样本特征放到这个“已完成学习的模型”中,使用模型的输出作为相应标签的预测。
2.2无监督学习
数据中不含有“目标”的机器学习问题通常被为无监督学习
2.3 强化学习
在强化学习问题中,智能体(agent)在一系列的时间步骤上与环境交互。 在每个特定时间点,智能体从环境接收一些观察(observation),并且必须选择一个动作(action),然后通过某种机制(有时称为执行器)将其传输回环境,最后智能体从环境中获得奖励(reward)。 此后新一轮循环开始,智能体接收后续观察,并选择后续操作,依此类推。
2.4联邦学习
联邦学习是从技术维度出发,重点研究其中的隐私保护和数据安全问题的一种技术。其旨在建立一个基于分布数据集的联邦学习模型。
对于联邦学习的过程,主要分为两部分:
1.模型训练。在模型训练阶段,模型相关的信息可以在各方之间交换(或者是以加密形式进行交换),但数据不能交换,因此各个站点上的数据将受到保护,训练好的联邦学习模型可以置于联邦学习系统的各参与方,也可以在多方之间共享;
2.模型推理。在模型推理阶段,模型可应用于新的数据实例,由各参与方协作进行预测,最终,通过公平的价值分配机制来分配协同模型所获得的收益,通过这种激励机制,从而使得联邦学习过程能够持续。
具体来讲,联邦学习用来建立的机器学习模型的算法框架具有以下特征:
1.有两个或以上的联邦学习参与方协作构建一个共享的机器学习模型。每一个参与方都拥有若干能够用来训练模型的训练数据;
2.在联邦学习模型的训练过程中,每一个参与方拥有的数据都不会离开该参与方,即数据不离开数据拥有者;
3.联邦学习模型相关的信息能够以加密方式在各方之间进行传输和交换,并且需要保证任何一个参与方都不能推测出其他方的原始数据;
联邦学习模型的性能要能够充分逼近理想模型(是指通过将所有训练数据集中在一起并训练获得的机器学习模型)的性能。